Fresh from the feed
Filter by timeframe and category to zero in on the moves that matter.
arXiv:2511.11596v1 Announce Type: new Abstract: Loss Given Default (LGD) modeling faces a fundamental data quality constraint: 90% of available training data consists of proxy estimates based on pre-distress balance sheets rather than actual recovery outcomes from completed bankruptcy proceedings. We demonstrate that this mixture-contaminated training structure causes systematic failure of recursive partitioning methods, with Random Forest achieving negative r-squared (-0.664, worse than predicting the mean) on held-out test data. Information-theoretic approaches based on Shannon entropy and mutual information provide superior generalization, achieving r-squared of 0.191 and RMSE of 0.284 on 1,218 corporate bankruptcies (1980-2023). Analysis reveals that leverage-based features contain 1.510 bits of mutual information while size effects contribute only 0.086 bits, contradicting regulatory assumptions about scale-dependent recovery. These results establish practical guidance for financial institutions deploying LGD models under Basel III requirements when representative outcome data is unavailable at sufficient scale. The findings generalize to medical outcomes research, climate forecasting, and technology reliability-domains where extended observation periods create unavoidable mixture structure in training data.
arXiv:2511.11602v1 Announce Type: new Abstract: Reinforcement-based learning has attracted considerable attention both in modeling human behavior as well as in engineering, for designing measurement- or payoff-based optimization schemes. Such learning schemes exhibit several advantages, especially in relation to filtering out noisy observations. However, they may exhibit several limitations when applied in a distributed setup. In multi-player weakly-acyclic games, and when each player applies an independent copy of the learning dynamics, convergence to (usually desirable) pure Nash equilibria cannot be guaranteed. Prior work has only focused on a small class of games, namely potential and coordination games. To address this main limitation, this paper introduces a novel payoff-based learning scheme for distributed optimization, namely aspiration-based perturbed learning automata (APLA). In this class of dynamics, and contrary to standard reinforcement-based learning schemes, each player's probability distribution for selecting actions is reinforced both by repeated selection and an aspiration factor that captures the player's satisfaction level. We provide a stochastic stability analysis of APLA in multi-player positive-utility games under the presence of noisy observations. This is the first part of the paper that characterizes stochastic stability in generic non-zero-sum games by establishing equivalence of the induced infinite-dimensional Markov chain with a finite dimensional one. In the second part, stochastic stability is further specialized to weakly acyclic games.
arXiv:2511.11604v1 Announce Type: new Abstract: The convergence of the Internet of Things (IoT) and Industry 4.0 has significantly enhanced data-driven methodologies within the nuclear industry, notably enhancing safety and economic efficiency. This advancement challenges the precise prediction of future maintenance needs for assets, which is crucial for reducing downtime and operational costs. However, the effectiveness of data-driven methodologies in the nuclear sector requires extensive domain knowledge due to the complexity of the systems involved. Thus, this paper proposes a novel predictive maintenance methodology that combines data-driven techniques with domain knowledge from a nuclear equipment. The methodological originality of this paper is located on two levels: highlighting the limitations of purely data-driven approaches and demonstrating the importance of knowledge in enhancing the performance of the predictive models. The applicative novelty of this work lies in its use within a domain such as a nuclear industry, which is highly restricted and ultrasensitive due to security, economic and environmental concerns. A detailed real-world case study which compares the current state of equipment monitoring with two scenarios, demonstrate that the methodology significantly outperforms purely data-driven methods in failure prediction. While purely data-driven methods achieve only a modest performance with a prediction horizon limited to 3 h and a F1 score of 56.36%, the hybrid approach increases the prediction horizon to 24 h and achieves a higher F1 score of 93.12%.
arXiv:2511.11607v1 Announce Type: new Abstract: Reinforcement learning (RL) has made significant advancements, achieving superhuman performance in various tasks. However, RL agents often operate under the assumption of environmental stationarity, which poses a great challenge to learning efficiency since many environments are inherently non-stationary. This non-stationarity results in the requirement of millions of iterations, leading to low sample efficiency. To address this issue, we introduce the Clustering Orthogonal Weight Modified (COWM) layer, which can be integrated into the policy network of any RL algorithm and mitigate non-stationarity effectively. The COWM layer stabilizes the learning process by employing clustering techniques and a projection matrix. Our approach not only improves learning speed but also reduces gradient interference, thereby enhancing the overall learning efficiency. Empirically, the COWM outperforms state-of-the-art methods and achieves improvements of 9% and 12.6% in vision based and state-based DMControl benchmark. It also shows robustness and generality across various algorithms and tasks.
arXiv:2511.11623v1 Announce Type: new Abstract: Graft-versus-host disease (GVHD) is a rare but often fatal complication in liver transplantation, with a very high mortality rate. By harnessing multi-modal deep learning methods to integrate heterogeneous and imbalanced electronic health records (EHR), we aim to advance early prediction of GVHD, paving the way for timely intervention and improved patient outcomes. In this study, we analyzed pre-transplant electronic health records (EHR) spanning the period before surgery for 2,100 liver transplantation patients, including 42 cases of graft-versus-host disease (GVHD), from a cohort treated at Mayo Clinic between 1992 and 2025. The dataset comprised four major modalities: patient demographics, laboratory tests, diagnoses, and medications. We developed a multi-modal deep learning framework that dynamically fuses these modalities, handles irregular records with missing values, and addresses extreme class imbalance through AUC-based optimization. The developed framework outperforms all single-modal and multi-modal machine learning baselines, achieving an AUC of 0.836, an AUPRC of 0.157, a recall of 0.768, and a specificity of 0.803. It also demonstrates the effectiveness of our approach in capturing complementary information from different modalities, leading to improved performance. Our multi-modal deep learning framework substantially improves existing approaches for early GVHD prediction. By effectively addressing the challenges of heterogeneity and extreme class imbalance in real-world EHR, it achieves accurate early prediction. Our proposed multi-modal deep learning method demonstrates promising results for early prediction of a GVHD in liver transplantation, despite the challenge of extremely imbalanced EHR data.
arXiv:2511.11625v1 Announce Type: new Abstract: Artificial intelligence (AI) has shown great potential in medical imaging, particularly for brain tumor detection using Magnetic Resonance Imaging (MRI). However, the models remain vulnerable at inference time when they are trained collaboratively through Federated Learning (FL), an approach adopted to protect patient privacy. Adversarial attacks can subtly alter medical scans in ways invisible to the human eye yet powerful enough to mislead AI models, potentially causing serious misdiagnoses. Existing defenses often assume centralized data and struggle to cope with the decentralized and diverse nature of federated medical settings. In this work, we present MedFedPure, a personalized federated learning defense framework designed to protect diagnostic AI models at inference time without compromising privacy or accuracy. MedFedPure combines three key elements: (1) a personalized FL model that adapts to the unique data distribution of each institution; (2) a Masked Autoencoder (MAE) that detects suspicious inputs by exposing hidden perturbations; and (3) an adaptive diffusion-based purification module that selectively cleans only the flagged scans before classification. Together, these steps offer robust protection while preserving the integrity of normal, benign images. We evaluated MedFedPure on the Br35H brain MRI dataset. The results show a significant gain in adversarial robustness, improving performance from 49.50% to 87.33% under strong attacks, while maintaining a high clean accuracy of 97.67%. By operating locally and in real time during diagnosis, our framework provides a practical path to deploying secure, trustworthy, and privacy-preserving AI tools in clinical workflows. Index Terms: cancer, tumor detection, federated learning, masked autoencoder, diffusion, privacy
arXiv:2511.11627v1 Announce Type: new Abstract: Full-waveform inversion (FWI) can produce high-resolution subsurface models, yet it remains inherently ill-posed, highly nonlinear, and computationally intensive. Although recent deep learning and numerical acceleration methods have improved speed and scalability, they often rely on single CNN architectures or single neural operators, which struggle to generalize in unknown or complex geological settings and are ineffective at distinguishing diverse geological types. To address these issues, we propose a Structure-Aligned Encoder-Mixture-of-Operators (SA-EMO) architecture for velocity-field inversion under unknown subsurface structures. First, a structure-aligned encoder maps high-dimensional seismic wavefields into a physically consistent latent space, thereby eliminating spatio-temporal mismatch between the waveform and velocity domains, recovering high-frequency components, and enhancing feature generalization. Then, an adaptive routing mechanism selects and fuses multiple neural-operator experts, including spectral, wavelet, multiscale, and local operators, to predict the velocity model. We systematically evaluate our approach on the OpenFWI benchmark and the Marmousi2 dataset. Results show that SA-EMO significantly outperforms traditional CNN or single-operator methods, achieving an average MAE reduction of approximately 58.443% and an improvement in boundary resolution of about 10.308%. Ablation studies further reveal that the structure-aligned encoder, the expert-fusion mechanism, and the routing module each contribute markedly to the performance gains. This work introduces a new paradigm for efficient, scalable, and physically interpretable full-waveform inversion.
arXiv:2511.11629v1 Announce Type: new Abstract: Strain Gauge Status (SGS) recognition is crucial in the field of intelligent manufacturing based on the Internet of Things, as accurate identification helps timely detection of failed mechanical components, avoiding accidents. The loading and unloading sequences generated by strain gauges can be identified through time series classification (TSC) algorithms. Recently, deep learning models, e.g., convolutional neural networks (CNNs) have shown remarkable success in the TSC task, as they can extract discriminative local features from the subsequences to identify the time series. However, we observe that only the local features may not be sufficient for expressing the time series, especially when the local sub-sequences between different time series are very similar, e.g., SGS data of aircraft wings in static strength experiments. Nevertheless, CNNs suffer from the limitation in extracting global features due to the nature of convolution operations. For extracting global features to more comprehensively represent the SGS time series, we propose two insights: (i) Constructing global features through feature engineering. (ii) Learning high-order relationships between local features to capture global features. To realize and utilize them, we propose a hypergraph-based global feature learning and fusion framework, which learns and fuses global features for semantic consistency to enhance the representation of SGS time series, thereby improving recognition accuracy. Our method designs are validated on industrial SGS and public UCR datasets, showing better generalization for unseen data in SGS recognition.
arXiv:2511.11630v1 Announce Type: new Abstract: Grain Growth strongly influences the mechanical behavior of materials, making its prediction a key objective in microstructural engineering. In this study, several deep learning approaches were evaluated, including recurrent neural networks (RNN), long short-term memory (LSTM), temporal convolutional networks (TCN), and transformers, to forecast grain size distributions during grain growth. Unlike full-field simulations, which are computationally demanding, the present work relies on mean-field statistical descriptors extracted from high-fidelity simulations. A dataset of 120 grain growth sequences was processed into normalized grain size distributions as a function of time. The models were trained to predict future distributions from a short temporal history using a recursive forecasting strategy. Among the tested models, the LSTM network achieved the highest accuracy (above 90\%) and the most stable performance, maintaining physically consistent predictions over extended horizons while reducing computation time from about 20 minutes per sequence to only a few seconds, whereas the other architectures tended to diverge when forecasting further in time. These results highlight the potential of low-dimensional descriptors and LSTM-based forecasting for efficient and accurate microstructure prediction, with direct implications for digital twin development and process optimization.
arXiv:2511.11632v1 Announce Type: new Abstract: In few-shot learning, classifiers are expected to generalize to unseen classes given only a small number of instances of each new class. One of the popular solutions to few-shot learning is metric-based meta-learning. However, it highly depends on the deep metric learned on seen classes, which may overfit to seen classes and fail to generalize well on unseen classes. To improve the generalization, we explore the substructures of classifiers and propose a novel meta-learning algorithm to learn each classifier as a combination of meta-components. Meta-components are learned across meta-learning episodes on seen classes and disentangled by imposing an orthogonal regularizer to promote its diversity and capture various shared substructures among different classifiers. Extensive experiments on few-shot benchmark tasks show superior performances of the proposed method.
arXiv:2511.11636v1 Announce Type: new Abstract: This paper presents a fairness-audited and interpretable machine learning framework for predicting polycystic ovary syndrome (PCOS), designed to evaluate model performance and identify diagnostic disparities across patient subgroups. The framework integrated SHAP-based feature attributions with demographic audits to connect predictive explanations with observed disparities for actionable insights. Probabilistic calibration metrics (Brier Score and Expected Calibration Error) are incorporated to ensure reliable risk predictions across subgroups. Random Forest, SVM, and XGBoost models were trained with isotonic and Platt scaling for calibration and fairness comparison. A calibrated Random Forest achieved a high predictive accuracy of 90.8%. SHAP analysis identified follicle count, weight gain, and menstrual irregularity as the most influential features, which are consistent with the Rotterdam diagnostic criteria. Although the SVM with isotonic calibration achieved the lowest calibration error (ECE = 0.0541), the Random Forest model provided a better balance between calibration and interpretability (Brier = 0.0678, ECE = 0.0666). Therefore, it was selected for detailed fairness and SHAP analyses. Subgroup analysis revealed that the model performed best among women aged 25-35 (accuracy 90.9%) but underperformed in those under 25 (69.2%), highlighting age-related disparities. The model achieved perfect precision in obese women and maintained high recall in lean PCOS cases, demonstrating robustness across phenotypes. Finally, a Streamlit-based web interface enables real-time PCOS risk assessment, Rotterdam criteria evaluation, and interactive 'what-if' analysis, bridging the gap between AI research and clinical usability.
arXiv:2511.11638v1 Announce Type: new Abstract: Standard physics-informed neural network implementations have produced large error rates when using these models to solve the regularized long wave (RLW) equation. Two improved PINN approaches were developed in this research: an adaptive approach with self-adaptive loss weighting and a conservative approach enforcing explicit conservation laws. Three benchmark tests were used to demonstrate how effective PINN's are as they relate to the type of problem being solved (i.e., time dependent RLW equation). The first was a single soliton traveling along a line (propagation), the second was the interaction between two solitons, and the third was the evolution of an undular bore over the course of $t=250$. The results demonstrated that the effectiveness of PINNs are problem specific. The adaptive PINN was significantly better than both the conservative PINN and the standard PINN at solving problems involving complex nonlinear interactions such as colliding two solitons. The conservative approach was significantly better at solving problems involving long term behavior of single solitons and undular bores. However, the most important finding from this research is that explicitly enforcing conservation laws may be harmful to optimizing the solution of highly nonlinear systems of equations and therefore requires special training methods. The results from our adaptive and conservative approaches were within $O(10^{-5})$ of established numerical solutions for the same problem, thus demonstrating that PINNs can provide accurate solutions to complex systems of partial differential equations without the need for a discretization of space or time (mesh free). Moreover, the finding from this research challenges the assumptions that conservation enforcement will always improve the performance of a PINN and provides researchers with guidelines for designing PINNs for use on specific types of problems.
arXiv:2511.11641v1 Announce Type: new Abstract: Transformers have become the backbone of modern AI, yet their high computational demands pose critical system challenges. While sparse training offers efficiency gains, existing methods fail to preserve critical structural relationships between weight matrices that interact multiplicatively in attention and feed-forward layers. This oversight leads to performance degradation at high sparsity levels. We introduce EcoSpa, an efficient structured sparse training method that jointly evaluates and sparsifies coupled weight matrix pairs, preserving their interaction patterns through aligned row/column removal. EcoSpa introduces a new granularity for calibrating structural component importance and performs coupled estimation and sparsification across both pre-training and fine-tuning scenarios. Evaluations demonstrate substantial improvements: EcoSpa enables efficient training of LLaMA-1B with 50\% memory reduction and 21\% faster training, achieves $2.2\times$ model compression on GPT-2-Medium with $2.4$ lower perplexity, and delivers $1.6\times$ inference speedup. The approach uses standard PyTorch operations, requiring no custom hardware or kernels, making efficient transformer training accessible on commodity hardware.
arXiv:2511.11646v1 Announce Type: new Abstract: Product line extension is a marketing strategy that enhances a company's sphere of influence. Because excessive line extensions disrupt brand image, only appropriate line extensions based on consumer needs are desirable. Marketers should know the key consumer attributes of the primary customers for new line-extended products before companies enter the market. This paper describes a method for predicting changes in consumer attributes for new line-extended products using a novel deep learning model. The proposed model, Conditional Tabular Variational Auto-Encoder (CTVAE), generates synthetic data from large-scale tabular data of consumers and products. It can provide various implications about effective product line marketing for marketers. The experimental results demonstrate that the CTVAE offers superior prediction performance than existing models. We indicate implications for new products that change containers or flavors for effective product line marketing. The proposed approach has the potential to contribute to avoiding cannibalization and to designing product images and marketing strategies.
arXiv:2511.11647v1 Announce Type: new Abstract: This paper presents a novel and sustainable approach for improving beam selection in 5G and beyond networks using transfer learning and Reinforcement Learning (RL). Traditional RL-based beam selection models require extensive training time and computational resources, particularly when deployed in diverse environments with varying propagation characteristics posing a major challenge for scalability and energy efficiency. To address this, we propose modeling the environment as a point cloud, where each point represents the locations of gNodeBs (gNBs) and surrounding scatterers. By computing the Chamfer distance between point clouds, structurally similar environments can be efficiently identified, enabling the reuse of pre-trained models through transfer learning. This methodology leads to a 16x reduction in training time and computational overhead, directly contributing to energy efficiency. By minimizing the need for retraining in each new deployment, our approach significantly lowers power consumption and supports the development of green and sustainable Artificial Intelligence (AI) in wireless systems. Furthermore, it accelerates time-to-deployment, reduces carbon emissions associated with training, and enhances the viability of deploying AI-driven communication systems at the edge. Simulation results confirm that our approach maintains high performance while drastically cutting energy costs, demonstrating the potential of transfer learning to enable scalable, adaptive, and environmentally conscious RL-based beam selection strategies in dynamic and diverse propagation environments.
arXiv:2511.11648v1 Announce Type: new Abstract: Time series foundation models (TSFMs) have demonstrated increasing capabilities due to their extensive pretraining on large volumes of diverse time series data. Consequently, the quality of time series data is crucial to TSFM performance, rendering an accurate and efficient data valuation of time series for TSFMs indispensable. However, traditional data valuation methods, such as influence functions, face severe computational bottlenecks due to their poor scalability with growing TSFM model sizes and often fail to preserve temporal dependencies. In this paper, we propose LTSV, a Lightweight Time Series Valuation on TSFMS via in-context finetuning. Grounded in the theoretical evidence that in-context finetuning approximates the influence function, LTSV estimates a sample's contribution by measuring the change in context loss after in-context finetuning, leveraging the strong generalization capabilities of TSFMs to produce robust and transferable data valuations. To capture temporal dependencies, we introduce temporal block aggregation, which integrates per-block influence scores across overlapping time windows. Experiments across multiple time series datasets and models demonstrate that LTSV consistently provides reliable and strong valuation performance, while maintaining manageable computational requirements. Our results suggest that in-context finetuning on time series foundation models provides a practical and effective bridge between data attribution and model generalization in time series learning.
arXiv:2511.11650v1 Announce Type: new Abstract: Water is a critical resource that must be managed efficiently. However, a substantial amount of water is lost each year due to leaks in Water Distribution Networks (WDNs). This underscores the need for reliable and effective leak detection and localization systems. In recent years, various solutions have been proposed, with data-driven approaches gaining increasing attention due to their superior performance. In this paper, we propose a new method for leak detection. The method is based on water pressure measurements acquired at a series of nodes of a WDN. Our technique is a fully data-driven solution that makes only use of the knowledge of the WDN topology, and a series of pressure data acquisitions obtained in absence of leaks. The proposed solution is based on an feature extractor and a one-class Support Vector Machines (SVM) trained on no-leak data, so that leaks are detected as anomalies. The results achieved on a simulate dataset using the Modena WDN demonstrate that the proposed solution outperforms recent methods for leak detection.
arXiv:2511.11651v1 Announce Type: new Abstract: As a critical mental health disorder, depression has severe effects on both human physical and mental well-being. Recent developments in EEG-based depression analysis have shown promise in improving depression detection accuracies. However, EEG features often contain redundant, irrelevant, and noisy information. Additionally, real-world EEG data acquisition frequently faces challenges, such as data loss from electrode detachment and heavy noise interference. To tackle the challenges, we propose a novel feature selection approach for robust depression analysis, called Incomplete Depression Feature Selection with Missing EEG Channels (IDFS-MEC). IDFS-MEC integrates missing-channel indicator information and adaptive channel weighting learning into orthogonal regression to lessen the effects of incomplete channels on model construction, and then utilizes global redundancy minimization learning to reduce redundant information among selected feature subsets. Extensive experiments conducted on MODMA and PRED-d003 datasets reveal that the EEG feature subsets chosen by IDFS-MEC have superior performance than 10 popular feature selection methods among 3-, 64-, and 128-channel settings.
arXiv:2511.11652v1 Announce Type: new Abstract: Urban weather station networks (WSNs) are widely used to monitor urban weather and climate patterns and aid urban planning. However, maintaining WSNs is expensive and labor-intensive. Here, we present a step-wise station removal procedure to thin an existing WSN in Freiburg, Germany, and analyze the ability of WSN subsets to reproduce air temperature and humidity patterns of the entire original WSN for a year following a simulated reduction of WSN density. We found that substantial reductions in station numbers after one year of full deployment are possible while retaining high predictive accuracy. A reduction from 42 to 4 stations, for instance, increased mean prediction RMSEs from 0.69 K to 0.83 K for air temperature and from 3.8% to 4.4% for relative humidity, corresponding to RMSE increases of only 20% and 16%, respectively. Predictive accuracy is worse for remote stations in forests than for stations in built-up or open settings, but consistently better than a state-of-the-art numerical urban land-surface model (Surface Urban Energy and Water Balance Scheme). Stations located at the edges between built-up and rural areas are most valuable when reconstructing city-wide climate characteristics. Our study demonstrates the potential of thinning WSNs to maximize the efficient allocation of financial and personnel-related resources in urban climate research.
arXiv:2511.11654v1 Announce Type: new Abstract: Rapid urbanization in cities like Bangalore has led to severe traffic congestion, making efficient Traffic Signal Control (TSC) essential. Multi-Agent Reinforcement Learning (MARL), often modeling each traffic signal as an independent agent using Q-learning, has emerged as a promising strategy to reduce average commuter delays. While prior work Prashant L A et. al has empirically demonstrated the effectiveness of this approach, a rigorous theoretical analysis of its stability and convergence properties in the context of traffic control has not been explored. This paper bridges that gap by focusing squarely on the theoretical basis of this multi-agent algorithm. We investigate the convergence problem inherent in using independent learners for the cooperative TSC task. Utilizing stochastic approximation methods, we formally analyze the learning dynamics. The primary contribution of this work is the proof that the specific multi-agent reinforcement learning algorithm for traffic control is proven to converge under the given conditions extending it from single agent convergence proofs for asynchronous value iteration.