How many stations are sufficient? Exploring the effect of urban weather station density reduction on imputation accuracy of air temperature and humidity
arXiv:2511.11652v1 Announce Type: new Abstract: Urban weather station networks (WSNs) are widely used to monitor urban weather and climate patterns and aid urban planning. However, maintaining WSNs is expensive and labor-intensive. Here, we present a step-wise station removal procedure to thin an existing WSN in Freiburg, Germany, and analyze the ability of WSN subsets to reproduce air temperature and humidity patterns of the entire original WSN for a year following a simulated reduction of WSN density. We found that substantial reductions in station numbers after one year of full deployment are possible while retaining high predictive accuracy. A reduction from 42 to 4 stations, for instance, increased mean prediction RMSEs from 0.69 K to 0.83 K for air temperature and from 3.8% to 4.4% for relative humidity, corresponding to RMSE increases of only 20% and 16%, respectively. Predictive accuracy is worse for remote stations in forests than for stations in built-up or open settings, but consistently better than a state-of-the-art numerical urban land-surface model (Surface Urban Energy and Water Balance Scheme). Stations located at the edges between built-up and rural areas are most valuable when reconstructing city-wide climate characteristics. Our study demonstrates the potential of thinning WSNs to maximize the efficient allocation of financial and personnel-related resources in urban climate research.
Score: 2.80
Engagement proxy: 0
Canonical link: https://arxiv.org/abs/2511.11652