paper
arXiv cs.LG
November 18th, 2025 at 5:00 AM

Environment-Aware Transfer Reinforcement Learning for Sustainable Beam Selection

arXiv:2511.11647v1 Announce Type: new Abstract: This paper presents a novel and sustainable approach for improving beam selection in 5G and beyond networks using transfer learning and Reinforcement Learning (RL). Traditional RL-based beam selection models require extensive training time and computational resources, particularly when deployed in diverse environments with varying propagation characteristics posing a major challenge for scalability and energy efficiency. To address this, we propose modeling the environment as a point cloud, where each point represents the locations of gNodeBs (gNBs) and surrounding scatterers. By computing the Chamfer distance between point clouds, structurally similar environments can be efficiently identified, enabling the reuse of pre-trained models through transfer learning. This methodology leads to a 16x reduction in training time and computational overhead, directly contributing to energy efficiency. By minimizing the need for retraining in each new deployment, our approach significantly lowers power consumption and supports the development of green and sustainable Artificial Intelligence (AI) in wireless systems. Furthermore, it accelerates time-to-deployment, reduces carbon emissions associated with training, and enhances the viability of deploying AI-driven communication systems at the edge. Simulation results confirm that our approach maintains high performance while drastically cutting energy costs, demonstrating the potential of transfer learning to enable scalable, adaptive, and environmentally conscious RL-based beam selection strategies in dynamic and diverse propagation environments.

#ai
#research

Score: 2.80

Engagement proxy: 0

Canonical link: https://arxiv.org/abs/2511.11647