paper
arXiv cs.LG
November 18th, 2025 at 5:00 AM

Global Feature Enhancing and Fusion Framework for Strain Gauge Time Series Classification

arXiv:2511.11629v1 Announce Type: new Abstract: Strain Gauge Status (SGS) recognition is crucial in the field of intelligent manufacturing based on the Internet of Things, as accurate identification helps timely detection of failed mechanical components, avoiding accidents. The loading and unloading sequences generated by strain gauges can be identified through time series classification (TSC) algorithms. Recently, deep learning models, e.g., convolutional neural networks (CNNs) have shown remarkable success in the TSC task, as they can extract discriminative local features from the subsequences to identify the time series. However, we observe that only the local features may not be sufficient for expressing the time series, especially when the local sub-sequences between different time series are very similar, e.g., SGS data of aircraft wings in static strength experiments. Nevertheless, CNNs suffer from the limitation in extracting global features due to the nature of convolution operations. For extracting global features to more comprehensively represent the SGS time series, we propose two insights: (i) Constructing global features through feature engineering. (ii) Learning high-order relationships between local features to capture global features. To realize and utilize them, we propose a hypergraph-based global feature learning and fusion framework, which learns and fuses global features for semantic consistency to enhance the representation of SGS time series, thereby improving recognition accuracy. Our method designs are validated on industrial SGS and public UCR datasets, showing better generalization for unseen data in SGS recognition.

#ai

Score: 2.80

Engagement proxy: 0

Canonical link: https://arxiv.org/abs/2511.11629