Fresh from the feed
Filter by timeframe and category to zero in on the moves that matter.
arXiv:2511.12631v1 Announce Type: new Abstract: While significant progress has been achieved in multimodal facial generation using semantic masks and textual descriptions, conventional feature fusion approaches often fail to enable effective cross-modal interactions, thereby leading to suboptimal generation outcomes. To address this challenge, we introduce MDiTFace--a customized diffusion transformer framework that employs a unified tokenization strategy to process semantic mask and text inputs, eliminating discrepancies between heterogeneous modality representations. The framework facilitates comprehensive multimodal feature interaction through stacked, newly designed multivariate transformer blocks that process all conditions synchronously. Additionally, we design a novel decoupled attention mechanism by dissociating implicit dependencies between mask tokens and temporal embeddings. This mechanism segregates internal computations into dynamic and static pathways, enabling caching and reuse of features computed in static pathways after initial calculation, thereby reducing additional computational overhead introduced by mask condition by over 94% while maintaining performance. Extensive experiments demonstrate that MDiTFace significantly outperforms other competing methods in terms of both facial fidelity and conditional consistency.
arXiv:2511.12633v1 Announce Type: new Abstract: Variational autoencoders (VAEs) typically encode images into a compact latent space, reducing computational cost but introducing an optimization dilemma: a higher-dimensional latent space improves reconstruction fidelity but often hampers generative performance. Recent methods attempt to address this dilemma by regularizing high-dimensional latent spaces using external vision foundation models (VFMs). However, it remains unclear how high-dimensional VAE latents affect the optimization of generative models. To our knowledge, our analysis is the first to reveal that redundant high-frequency components in high-dimensional latent spaces hinder the training convergence of diffusion models and, consequently, degrade generation quality. To alleviate this problem, we propose a spectral self-regularization strategy to suppress redundant high-frequency noise while simultaneously preserving reconstruction quality. The resulting Denoising-VAE, a ViT-based autoencoder that does not rely on VFMs, produces cleaner, lower-noise latents, leading to improved generative quality and faster optimization convergence. We further introduce a spectral alignment strategy to facilitate the optimization of Denoising-VAE-based generative models. Our complete method enables diffusion models to converge approximately 2$\times$ faster than with SD-VAE, while achieving state-of-the-art reconstruction quality (rFID = 0.28, PSNR = 27.26) and competitive generation performance (gFID = 1.82) on the ImageNet 256$\times$256 benchmark.
arXiv:2511.12639v1 Announce Type: new Abstract: Vision-language foundation models (VLMs) have shown great potential in feature transfer and generalization across a wide spectrum of medical-related downstream tasks. However, fine-tuning these models is resource-intensive due to their large number of parameters. Prompt tuning has emerged as a viable solution to mitigate memory usage and reduce training time while maintaining competitive performance. Nevertheless, the challenge is that existing prompt tuning methods cannot precisely distinguish different kinds of medical concepts, which miss essentially specific disease-related features across various medical imaging modalities in medical image classification tasks. We find that Large Language Models (LLMs), trained on extensive text corpora, are particularly adept at providing this specialized medical knowledge. Motivated by this, we propose incorporating LLMs into the prompt tuning process. Specifically, we introduce the CILMP, Conditional Intervention of Large Language Models for Prompt Tuning, a method that bridges LLMs and VLMs to facilitate the transfer of medical knowledge into VLM prompts. CILMP extracts disease-specific representations from LLMs, intervenes within a low-rank linear subspace, and utilizes them to create disease-specific prompts. Additionally, a conditional mechanism is incorporated to condition the intervention process on each individual medical image, generating instance-adaptive prompts and thus enhancing adaptability. Extensive experiments across diverse medical image datasets demonstrate that CILMP consistently outperforms state-of-the-art prompt tuning methods, demonstrating its effectiveness. Code is available at https://github.com/usr922/cilmp.
DPVO-QAT++: Heterogeneous QAT and CUDA Kernel Fusion for High-Performance Deep Patch Visual Odometry
arXiv:2511.12653v1 Announce Type: new Abstract: Deep learning-based Visual SLAM (vSLAM) systems exhibit exceptional geometric reasoning capabilities, yet their prohibitive computational overhead severely restricts deployment on resource-constrained autonomous platforms. This paper presents a hierarchical quantization optimization framework, DPVO-QAT++ (DPVO-QAT++: Heterogeneous QAT and CUDA Kernel Fusion for High-Performance Deep Patch Visual Odometry). Through the synergistic integration of learnable scale parameterization, a heterogeneous precision design for the Visual Odometry (VO) front-end and back-end (front-end floating-point fake quantization with FP16/FP32; back-end full precision), and GPU-native kernel fusion for fake quantization (custom CUDA kernels), our framework significantly reduces memory footprint and increases processing speed while preserving the trajectory accuracy of the original model. On the TartanAir dataset, our framework achieves an average FPS increase of 52.1%, a 29.1% reduction in median latency, and a 64.9% reduction in peak GPU memory reservation, while maintaining trajectory accuracy (ATE) comparable to the original DPVO model across 32 validation sequences. On the EuRoC dataset, it realizes an average FPS increase of 30.1%, a 23.1% reduction in median latency, and a 37.7% reduction in peak GPU memory reservation, maintaining comparable trajectory accuracy (ATE) across 11 validation sequences. Experimental results demonstrate that DPVO-QAT++ effectively bridges the gap between high-precision deep VO and the efficiency requirements for practical deployment, offering a viable engineering paradigm for the application of this technology on real-world embedded platforms. Keywords: Visual Odometry, Heterogeneous Precision Architecture, Quantization-Aware Training, CUDA Kernel Fusion, Scale-Only Training, Deep Patch Visual Odometry, GPU-Native Kernel Fusion.
arXiv:2511.12658v1 Announce Type: new Abstract: Existing Text Image Forgery Localization (T-IFL) methods often suffer from poor generalization due to the limited scale of real-world datasets and the distribution gap caused by synthetic data that fails to capture the complexity of real-world tampering. To tackle this issue, we propose Fourier Series-based Tampering Synthesis (FSTS), a structured and interpretable framework for synthesizing tampered text images. FSTS first collects 16,750 real-world tampering instances from five representative tampering types, using a structured pipeline that records human-performed editing traces via multi-format logs (e.g., video, PSD, and editing logs). By analyzing these collected parameters and identifying recurring behavioral patterns at both individual and population levels, we formulate a hierarchical modeling framework. Specifically, each individual tampering parameter is represented as a compact combination of basis operation-parameter configurations, while the population-level distribution is constructed by aggregating these behaviors. Since this formulation draws inspiration from the Fourier series, it enables an interpretable approximation using basis functions and their learned weights. By sampling from this modeled distribution, FSTS synthesizes diverse and realistic training data that better reflect real-world forgery traces. Extensive experiments across four evaluation protocols demonstrate that models trained with FSTS data achieve significantly improved generalization on real-world datasets. Dataset is available at \href{https://github.com/ZeqinYu/FSTS}{Project Page}.
arXiv:2511.12662v1 Announce Type: new Abstract: High-fidelity digital humans are increasingly used in interactive applications, yet achieving both visual realism and real-time responsiveness remains a major challenge. We present a high-fidelity, real-time conversational digital human system that seamlessly combines a visually realistic 3D avatar, persona-driven expressive speech synthesis, and knowledge-grounded dialogue generation. To support natural and timely interaction, we introduce an asynchronous execution pipeline that coordinates multi-modal components with minimal latency. The system supports advanced features such as wake word detection, emotionally expressive prosody, and highly accurate, context-aware response generation. It leverages novel retrieval-augmented methods, including history augmentation to maintain conversational flow and intent-based routing for efficient knowledge access. Together, these components form an integrated system that enables responsive and believable digital humans, suitable for immersive applications in communication, education, and entertainment.
arXiv:2511.12671v1 Announce Type: new Abstract: In this work, we propose an accurate and real-time optical flow and disparity estimation model by fusing pairwise input images in the proposed non-causal selective state space for dense perception tasks. We propose a non-causal Mamba block-based model that is fast and efficient and aptly manages the constraints present in a real-time applications. Our proposed model reduces inference times while maintaining high accuracy and low GPU usage for optical flow and disparity map generation. The results and analysis, and validation in real-life scenario justify that our proposed model can be used for unified real-time and accurate 3D dense perception estimation tasks. The code, along with the models, can be found at https://github.com/vimstereo/DensePerceptNCSSD
arXiv:2511.12675v1 Announce Type: new Abstract: The goal of Novel View Synthesis (NVS) is to generate realistic images of a given content from unseen viewpoints. But how can we trust that a generated image truly reflects the intended transformation? Evaluating its reliability remains a major challenge. While recent generative models, particularly diffusion-based approaches, have significantly improved NVS quality, existing evaluation metrics struggle to assess whether a generated image is both realistic and faithful to the source view and intended viewpoint transformation. Standard metrics, such as pixel-wise similarity and distribution-based measures, often mis-rank incorrect results as they fail to capture the nuanced relationship between the source image, viewpoint change, and generated output. We propose a task-aware evaluation framework that leverages features from a strong NVS foundation model, Zero123, combined with a lightweight tuning step to enhance discrimination. Using these features, we introduce two complementary evaluation metrics: a reference-based score, $D_{\text{PRISM}}$, and a reference-free score, $\text{MMD}_{\text{PRISM}}$. Both reliably identify incorrect generations and rank models in agreement with human preference studies, addressing a fundamental gap in NVS evaluation. Our framework provides a principled and practical approach to assessing synthesis quality, paving the way for more reliable progress in novel view synthesis. To further support this goal, we apply our reference-free metric to six NVS methods across three benchmarks: Toys4K, Google Scanned Objects (GSO), and OmniObject3D, where $\text{MMD}_{\text{PRISM}}$ produces a clear and stable ranking, with lower scores consistently indicating stronger models.
arXiv:2511.12676v1 Announce Type: new Abstract: Deploying embodied agents that can answer questions about their surroundings in realistic real-world settings remains difficult, partly due to the scarcity of benchmarks that faithfully capture practical operating conditions. We propose infrastructure inspection as a compelling domain for open-vocabulary Embodied Question Answering (EQA): it naturally demands multi-scale reasoning, long-range spatial understanding, and complex semantic relationships, while offering unique evaluation advantages via standardized National Bridge Inventory (NBI) condition ratings (0-9), professional inspection reports, and egocentric imagery. We introduce BridgeEQA, a benchmark of 2,200 open-vocabulary question-answer pairs (in the style of OpenEQA) grounded in professional inspection reports across 200 real-world bridge scenes with 47.93 images on average per scene. Questions require synthesizing visual evidence across multiple images and aligning responses with NBI condition ratings. We further propose a new EQA metric Image Citation Relevance to evaluate the ability of a model to cite relevant images. Evaluations of state-of-the-art vision-language models reveal substantial performance gaps under episodic memory EQA settings. To address this, we propose Embodied Memory Visual Reasoning (EMVR), which formulates inspection as sequential navigation over an image-based scene graph: images are nodes, and an agent takes actions to traverse views, compare evidence, and reason within a Markov decision process. EMVR shows strong performance over the baselines. We publicly release both the dataset and code.
arXiv:2511.12691v1 Announce Type: new Abstract: Foundation models for medical image segmentation struggle under out-of-distribution (OOD) shifts, often producing fragmented false positives on OOD tumors. We introduce R$^{2}$Seg, a training-free framework for robust OOD tumor segmentation that operates via a two-stage Reason-and-Reject process. First, the Reason step employs an LLM-guided anatomical reasoning planner to localize organ anchors and generate multi-scale ROIs. Second, the Reject step applies two-sample statistical testing to candidates generated by a frozen foundation model (BiomedParse) within these ROIs. This statistical rejection filter retains only candidates significantly different from normal tissue, effectively suppressing false positives. Our framework requires no parameter updates, making it compatible with zero-update test-time augmentation and avoiding catastrophic forgetting. On multi-center and multi-modal tumor segmentation benchmarks, R$^{2}$Seg substantially improves Dice, specificity, and sensitivity over strong baselines and the original foundation models. Code are available at https://github.com/Eurekashen/R2Seg.
arXiv:2511.12693v1 Announce Type: new Abstract: Vision-language models (VLMs) enable open-ended visual question answering but remain prone to hallucinations. We present HEDGE, a unified framework for hallucination detection that combines controlled visual perturbations, semantic clustering, and robust uncertainty metrics. HEDGE integrates sampling, distortion synthesis, clustering (entailment- and embedding-based), and metric computation into a reproducible pipeline applicable across multimodal architectures. Evaluations on VQA-RAD and KvasirVQA-x1 with three representative VLMs (LLaVA-Med, Med-Gemma, Qwen2.5-VL) reveal clear architecture- and prompt-dependent trends. Hallucination detectability is highest for unified-fusion models with dense visual tokenization (Qwen2.5-VL) and lowest for architectures with restricted tokenization (Med-Gemma). Embedding-based clustering often yields stronger separation when applied directly to the generated answers, whereas NLI-based clustering remains advantageous for LLaVA-Med and for longer, sentence-level responses. Across configurations, the VASE metric consistently provides the most robust hallucination signal, especially when paired with embedding clustering and a moderate sampling budget (n ~ 10-15). Prompt design also matters: concise, label-style outputs offer clearer semantic structure than syntactically constrained one-sentence responses. By framing hallucination detection as a geometric robustness problem shaped jointly by sampling scale, prompt structure, model architecture, and clustering strategy, HEDGE provides a principled, compute-aware foundation for evaluating multimodal reliability. The hedge-bench PyPI library enables reproducible and extensible benchmarking, with full code and experimental resources available at https://github.com/Simula/HEDGE .
arXiv:2511.12694v1 Announce Type: new Abstract: State Space Models (SSMs), particularly the Mamba architecture, have recently emerged as powerful alternatives to Transformers for sequence modeling, offering linear computational complexity while achieving competitive performance. Yet, despite their effectiveness, understanding how these Vision SSMs process spatial information remains challenging due to the lack of transparent, attention-like mechanisms. To address this gap, we introduce a controllability-based interpretability framework that quantifies how different parts of the input sequence (tokens or patches) influence the internal state dynamics of SSMs. We propose two complementary formulations: a Jacobian-based method applicable to any SSM architecture that measures influence through the full chain of state propagation, and a Gramian-based approach for diagonal SSMs that achieves superior speed through closed-form analytical solutions. Both methods operate in a single forward pass with linear complexity, requiring no architectural modifications or hyperparameter tuning. We validate our framework through experiments on three diverse medical imaging modalities, demonstrating that SSMs naturally implement hierarchical feature refinement from diffuse low-level textures in early layers to focused, clinically meaningful patterns in deeper layers. Our analysis reveals domain-specific controllability signatures aligned with diagnostic criteria, progressive spatial selectivity across the network hierarchy, and the substantial influence of scanning strategies on attention patterns. Beyond medical imaging, we articulate applications spanning computer vision, natural language processing, and cross-domain tasks. Our framework establishes controllability analysis as a unified, foundational interpretability paradigm for SSMs across all domains. Code and analysis tools will be made available upon publication
arXiv:2511.12702v1 Announce Type: new Abstract: Object counting has achieved remarkable success on visible instances, yet state-of-the-art (SOTA) methods fail under occlusion, a pervasive challenge in real world deployment. This failure stems from a fundamental architectural limitation where backbone networks encode occluding surfaces rather than target objects, thereby corrupting the feature representations required for accurate enumeration. To address this, we present CountOCC, an amodal counting framework that explicitly reconstructs occluded object features through hierarchical multimodal guidance. Rather than accepting degraded encodings, we synthesize complete representations by integrating spatial context from visible fragments with semantic priors from text and visual embeddings, generating class-discriminative features at occluded locations across multiple pyramid levels. We further introduce a visual equivalence objective that enforces consistency in attention space, ensuring that both occluded and unoccluded views of the same scene produce spatially aligned gradient-based attention maps. Together, these complementary mechanisms preserve discriminative properties essential for accurate counting under occlusion. For rigorous evaluation, we establish occlusion-augmented versions of FSC 147 and CARPK spanning both structured and unstructured scenes. CountOCC achieves SOTA performance on FSC 147 with 26.72% and 20.80% MAE reduction over prior baselines under occlusion in validation and test, respectively. CountOCC also demonstrates exceptional generalization by setting new SOTA results on CARPK with 49.89% MAE reduction and on CAPTUREReal with 28.79% MAE reduction, validating robust amodal counting across diverse visual domains. Code will be released soon.
arXiv:2511.12708v1 Announce Type: new Abstract: Understanding where drivers look and why they shift their attention is essential for autonomous systems that read human intent and justify their actions. Most existing models rely on large-scale gaze datasets to learn these patterns; however, such datasets are labor-intensive to collect and time-consuming to curate. We present FSDAM (Few-Shot Driver Attention Modeling), a framework that achieves joint attention prediction and caption generation with approximately 100 annotated examples, two orders of magnitude fewer than existing approaches. Our approach introduces a dual-pathway architecture where separate modules handle spatial prediction and caption generation while maintaining semantic consistency through cross-modal alignment. Despite minimal supervision, FSDAM achieves competitive performance on attention prediction, generates coherent, and context-aware explanations. The model demonstrates robust zero-shot generalization across multiple driving benchmarks. This work shows that effective attention-conditioned generation is achievable with limited supervision, opening new possibilities for practical deployment of explainable driver attention systems in data-constrained scenarios.
arXiv:2511.12735v1 Announce Type: new Abstract: Open-vocabulary object detectors (OVODs) unify vision and language to detect arbitrary object categories based on text prompts, enabling strong zero-shot generalization to novel concepts. As these models gain traction in high-stakes applications such as robotics, autonomous driving, and surveillance, understanding their security risks becomes crucial. In this work, we conduct the first study of backdoor attacks on OVODs and reveal a new attack surface introduced by prompt tuning. We propose TrAP (Trigger-Aware Prompt tuning), a multi-modal backdoor injection strategy that jointly optimizes prompt parameters in both image and text modalities along with visual triggers. TrAP enables the attacker to implant malicious behavior using lightweight, learnable prompt tokens without retraining the base model weights, thus preserving generalization while embedding a hidden backdoor. We adopt a curriculum-based training strategy that progressively shrinks the trigger size, enabling effective backdoor activation using small trigger patches at inference. Experiments across multiple datasets show that TrAP achieves high attack success rates for both object misclassification and object disappearance attacks, while also improving clean image performance on downstream datasets compared to the zero-shot setting.
arXiv:2511.12738v1 Announce Type: new Abstract: Vision Language Models (VLMs) mix visual tokens and text tokens. A puzzling issue is the fact that visual tokens most related to the query receive little to no attention in the final layers of the LLM module of VLMs from the answer tokens, where all tokens are treated equally, in particular, visual and language tokens in the LLM attention layers. This fact may result in wrong answers to visual questions, as our experimental results confirm. It appears that the standard next-token prediction (NTP) loss provides an insufficient signal for directing attention to visual tokens. We hypothesize that a more direct supervision of the attention of visual tokens to corresponding language tokens in the LLM module of VLMs will lead to improved performance on visual tasks. To demonstrate that this is indeed the case, we propose a novel loss function that directly supervises the attention of visual tokens. It directly grounds the answer language tokens in images by directing their attention to the relevant visual tokens. This is achieved by aligning the attention distribution of visual tokens to ground truth attention maps with KL divergence. The ground truth attention maps are obtained from task geometry in synthetic cases or from standard grounding annotations (e.g., bounding boxes or point annotations) in real images, and are used inside the LLM for attention supervision without requiring new labels. The obtained KL attention loss (KLAL) when combined with NTP encourages VLMs to attend to relevant visual tokens while generating answer tokens. This results in notable improvements across geometric tasks, pointing, and referring expression comprehension on both synthetic and real-world data, as demonstrated by our experiments. We also introduce a new dataset to evaluate the line tracing abilities of VLMs. Surprisingly, even commercial VLMs do not perform well on this task.
arXiv:2511.12740v1 Announce Type: new Abstract: Voxelization is an effective approach to reduce the computational cost of processing Light Detection and Ranging (LiDAR) data, yet it results in a loss of fine-scale structural information. This study explores whether low-level voxel content information, specifically target occupancy percentage within a voxel, can be inferred from high-level voxelized LiDAR point cloud data collected from Digital Imaging and remote Sensing Image Generation (DIRSIG) software. In our study, the targets include bark, leaf, soil, and miscellaneous materials. We propose a multi-target regression approach in the context of imbalanced learning using Kernel Point Convolutions (KPConv). Our research leverages cost-sensitive learning to address class imbalance called density-based relevance (DBR). We employ weighted Mean Saquared Erorr (MSE), Focal Regression (FocalR), and regularization to improve the optimization of KPConv. This study performs a sensitivity analysis on the voxel size (0.25 - 2 meters) to evaluate the effect of various grid representations in capturing the nuances of the forest. This sensitivity analysis reveals that larger voxel sizes (e.g., 2 meters) result in lower errors due to reduced variability, while smaller voxel sizes (e.g., 0.25 or 0.5 meter) exhibit higher errors, particularly within the canopy, where variability is greatest. For bark and leaf targets, error values at smaller voxel size datasets (0.25 and 0.5 meter) were significantly higher than those in larger voxel size datasets (2 meters), highlighting the difficulty in accurately estimating within-canopy voxel content at fine resolutions. This suggests that the choice of voxel size is application-dependent. Our work fills the gap in deep imbalance learning models for multi-target regression and simulated datasets for 3D LiDAR point clouds of forests.
arXiv:2511.12744v1 Announce Type: new Abstract: Integrating human perceptual priors into the training of neural networks has been shown to raise model generalization, serve as an effective regularizer, and align models with human expertise for applications in high-risk domains. Existing approaches to integrate saliency into model training often rely on internal model mechanisms, which recent research suggests may be unreliable. Our insight is that many challenges associated with saliency-guided training stem from the placement of the guidance approaches solely within the image space. Instead, we move away from the image space, use the model's latent space embeddings to steer human guidance during training, and we propose SAGE (Saliency-Guided Contrastive Embeddings): a loss function that integrates human saliency into network training using contrastive embeddings. We apply salient-preserving and saliency-degrading signal augmentations to the input and capture the changes in embeddings and model logits. We guide the model towards salient features and away from non-salient features using a contrastive triplet loss. Additionally, we perform a sanity check on the logit distributions to ensure that the model outputs match the saliency-based augmentations. We demonstrate a boost in classification performance across both open- and closed-set scenarios against SOTA saliency-based methods, showing SAGE's effectiveness across various backbones, and include experiments to suggest its wide generalization across tasks.
arXiv:2511.12757v1 Announce Type: new Abstract: It can be shown that Stable Diffusion has a permutation-invariance property with respect to the rows of Contrastive Language-Image Pretraining (CLIP) embedding matrices. This inspired the novel observation that these embeddings can naturally be interpreted as point clouds in a Wasserstein space rather than as matrices in a Euclidean space. This perspective opens up new possibilities for understanding the geometry of embedding space. For example, when interpolating between embeddings of two distinct prompts, we propose reframing the interpolation problem as an optimal transport problem. By solving this optimal transport problem, we compute a shortest path (or geodesic) between embeddings that captures a more natural and geometrically smooth transition through the embedding space. This results in smoother and more coherent intermediate (interpolated) images when rendered by the Stable Diffusion generative model. We conduct experiments to investigate this effect, comparing the quality of interpolated images produced using optimal transport to those generated by other standard interpolation methods. The novel optimal transport--based approach presented indeed gives smoother image interpolations, suggesting that viewing the embeddings as point clouds (rather than as matrices) better reflects and leverages the geometry of the embedding space.
arXiv:2511.12767v1 Announce Type: new Abstract: Automatic sign language recognition plays a crucial role in bridging the communication gap between deaf communities and hearing individuals; however, most available datasets focus on American Sign Language. For Romanian Isolated Sign Language Recognition (RoISLR), no large-scale, standardized dataset exists, which limits research progress. In this work, we introduce a new corpus for RoISLR, named RoCoISLR, comprising over 9,000 video samples that span nearly 6,000 standardized glosses from multiple sources. We establish benchmark results by evaluating seven state-of-the-art video recognition models-I3D, SlowFast, Swin Transformer, TimeSformer, Uniformer, VideoMAE, and PoseConv3D-under consistent experimental setups, and compare their performance with that of the widely used WLASL2000 corpus. According to the results, transformer-based architectures outperform convolutional baselines; Swin Transformer achieved a Top-1 accuracy of 34.1%. Our benchmarks highlight the challenges associated with long-tail class distributions in low-resource sign languages, and RoCoISLR provides the initial foundation for systematic RoISLR research.