paper
arXiv cs.CV
November 18th, 2025 at 5:00 AM

Direct Visual Grounding by Directing Attention of Visual Tokens

arXiv:2511.12738v1 Announce Type: new Abstract: Vision Language Models (VLMs) mix visual tokens and text tokens. A puzzling issue is the fact that visual tokens most related to the query receive little to no attention in the final layers of the LLM module of VLMs from the answer tokens, where all tokens are treated equally, in particular, visual and language tokens in the LLM attention layers. This fact may result in wrong answers to visual questions, as our experimental results confirm. It appears that the standard next-token prediction (NTP) loss provides an insufficient signal for directing attention to visual tokens. We hypothesize that a more direct supervision of the attention of visual tokens to corresponding language tokens in the LLM module of VLMs will lead to improved performance on visual tasks. To demonstrate that this is indeed the case, we propose a novel loss function that directly supervises the attention of visual tokens. It directly grounds the answer language tokens in images by directing their attention to the relevant visual tokens. This is achieved by aligning the attention distribution of visual tokens to ground truth attention maps with KL divergence. The ground truth attention maps are obtained from task geometry in synthetic cases or from standard grounding annotations (e.g., bounding boxes or point annotations) in real images, and are used inside the LLM for attention supervision without requiring new labels. The obtained KL attention loss (KLAL) when combined with NTP encourages VLMs to attend to relevant visual tokens while generating answer tokens. This results in notable improvements across geometric tasks, pointing, and referring expression comprehension on both synthetic and real-world data, as demonstrated by our experiments. We also introduce a new dataset to evaluate the line tracing abilities of VLMs. Surprisingly, even commercial VLMs do not perform well on this task.

#ai
#llm

Score: 2.80

Engagement proxy: 0

Canonical link: https://arxiv.org/abs/2511.12738