paper
arXiv cs.CV
November 18th, 2025 at 5:00 AM

DPVO-QAT++: Heterogeneous QAT and CUDA Kernel Fusion for High-Performance Deep Patch Visual Odometry

arXiv:2511.12653v1 Announce Type: new Abstract: Deep learning-based Visual SLAM (vSLAM) systems exhibit exceptional geometric reasoning capabilities, yet their prohibitive computational overhead severely restricts deployment on resource-constrained autonomous platforms. This paper presents a hierarchical quantization optimization framework, DPVO-QAT++ (DPVO-QAT++: Heterogeneous QAT and CUDA Kernel Fusion for High-Performance Deep Patch Visual Odometry). Through the synergistic integration of learnable scale parameterization, a heterogeneous precision design for the Visual Odometry (VO) front-end and back-end (front-end floating-point fake quantization with FP16/FP32; back-end full precision), and GPU-native kernel fusion for fake quantization (custom CUDA kernels), our framework significantly reduces memory footprint and increases processing speed while preserving the trajectory accuracy of the original model. On the TartanAir dataset, our framework achieves an average FPS increase of 52.1%, a 29.1% reduction in median latency, and a 64.9% reduction in peak GPU memory reservation, while maintaining trajectory accuracy (ATE) comparable to the original DPVO model across 32 validation sequences. On the EuRoC dataset, it realizes an average FPS increase of 30.1%, a 23.1% reduction in median latency, and a 37.7% reduction in peak GPU memory reservation, maintaining comparable trajectory accuracy (ATE) across 11 validation sequences. Experimental results demonstrate that DPVO-QAT++ effectively bridges the gap between high-precision deep VO and the efficiency requirements for practical deployment, offering a viable engineering paradigm for the application of this technology on real-world embedded platforms. Keywords: Visual Odometry, Heterogeneous Precision Architecture, Quantization-Aware Training, CUDA Kernel Fusion, Scale-Only Training, Deep Patch Visual Odometry, GPU-Native Kernel Fusion.

#ai
#research

Score: 2.80

Engagement proxy: 0

Canonical link: https://arxiv.org/abs/2511.12653