Fresh from the feed
Filter by timeframe and category to zero in on the moves that matter.
arXiv:2511.11000v2 Announce Type: cross Abstract: Recognizing speaker intent in long audio dialogues among speakers has a wide range of applications, but is a non-trivial AI task due to complex inter-dependencies in speaker utterances and scarce annotated data. To address these challenges, an end-to-end framework, namely DialogGraph-LLM, is proposed in the current work. DialogGraph-LLM combines a novel Multi-Relational Dialogue Attention Network (MR-DAN) architecture with multimodal foundation models (e.g., Qwen2.5-Omni-7B) for direct acoustic-to-intent inference. An adaptive semi-supervised learning strategy is designed using LLM with a confidence-aware pseudo-label generation mechanism based on dual-threshold filtering using both global and class confidences, and an entropy-based sample selection process that prioritizes high-information unlabeled instances. Extensive evaluations on the proprietary MarketCalls corpus and the publicly available MIntRec 2.0 benchmark demonstrate DialogGraph-LLM's superiority over strong audio and text-driven baselines. The framework demonstrates strong performance and efficiency in intent recognition in real world scenario audio dialogues, proving its practical value for audio-rich domains with limited supervision. Our code is available at https://github.com/david188888/DialogGraph-LLM.
arXiv:2511.11597v1 Announce Type: cross Abstract: Evaluating how Large Language Models (LLMs) handle complex, specialized knowledge remains a critical challenge. We address this through the lens of climate change by introducing CLINB, a benchmark that assesses models on open-ended, grounded, multimodal question answering tasks with clear requirements for knowledge quality and evidential support. CLINB relies on a dataset of real users' questions and evaluation rubrics curated by leading climate scientists. We implement and validate a model-based evaluation process and evaluate several frontier models. Our findings reveal a critical dichotomy. Frontier models demonstrate remarkable knowledge synthesis capabilities, often exhibiting PhD-level understanding and presentation quality. They outperform "hybrid" answers curated by domain experts assisted by weaker models. However, this performance is countered by failures in grounding. The quality of evidence varies, with substantial hallucination rates for references and images. We argue that bridging this gap between knowledge synthesis and verifiable attribution is essential for the deployment of AI in scientific workflows and that reliable, interpretable benchmarks like CLINB are needed to progress towards building trustworthy AI systems.
arXiv:2511.11622v1 Announce Type: cross Abstract: Tokenization and transfer learning are two critical components in building state of the art time series foundation models for forecasting. In this work, we systematically study the effect of tokenizer design, specifically scaling and quantization strategies, on model performance, alongside the impact of pretraining versus random initialization. We show that tokenizer configuration primarily governs the representational capacity and stability of the model, while transfer learning influences optimization efficiency and alignment. Using a combination of empirical training experiments and theoretical analyses, we demonstrate that pretrained models consistently leverage well-designed tokenizers more effectively, particularly at smaller vocabulary sizes. Conversely, misaligned tokenization can diminish or even invert the benefits of pretraining. These findings highlight the importance of careful tokenization in time series modeling and suggest that combining small, efficient vocabularies with pretrained weights is especially advantageous in multi-modal forecasting settings, where the overall vocabulary must be shared across modalities. Our results provide concrete guidance for designing tokenizers and leveraging transfer learning in discrete representation learning for continuous signals.
arXiv:2511.11624v1 Announce Type: cross Abstract: Cloud-based large language models (LLMs) and their variants have significantly influenced real-world applications. Deploying smaller models (i.e., small language models (SLMs)) on edge devices offers additional advantages, such as reduced latency and independence from network connectivity. However, edge devices' limited computing resources and constrained energy budgets challenge efficient deployment. This study evaluates the power efficiency of five representative SLMs - Llama 3.2, Phi-3 Mini, TinyLlama, and Gemma 2 on Raspberry Pi 5, Jetson Nano, and Jetson Orin Nano (CPU and GPU configurations). Results show that Jetson Orin Nano with GPU acceleration achieves the highest energy-to-performance ratio, significantly outperforming CPU-based setups. Llama 3.2 provides the best balance of accuracy and power efficiency, while TinyLlama is well-suited for low-power environments at the cost of reduced accuracy. In contrast, Phi-3 Mini consumes the most energy despite its high accuracy. In addition, GPU acceleration, memory bandwidth, and model architecture are key in optimizing inference energy efficiency. Our empirical analysis offers practical insights for AI, smart systems, and mobile ad-hoc platforms to leverage tradeoffs from accuracy, inference latency, and power efficiency in energy-constrained environments.
arXiv:2511.11669v1 Announce Type: cross Abstract: This article explores the design and experimentation of a neural network architecture capable of dynamically adjusting its internal structure based on the input data. The proposed model introduces a routing mechanism that allows each layer to influence how its outputs are propagated through the network, enabling iterative and adaptive computation. This concept is loosely inspired by the idea of thought processes and dynamic reasoning, where information flow is conditioned not only on the data itself, but also on the internal state of the system. It is important to note that this work does not aim to compete with state-of-the-art language models in terms of performance. Instead, it presents a conceptual prototype-an architectural framework that opens up a new direction for exploring adaptable and potentially more interpretable networks. The goal is not optimization of existing benchmarks but rather the proposal of a system that can learn not only representations, but also the structure of computation itself. Due to practical constraints in computing resources and data, this study remains a preliminary investigation. Nevertheless, initial observations show promise, and the architecture's full potential can only be evaluated in future experiments under more favorable computational conditions.
arXiv:2511.11678v1 Announce Type: cross Abstract: The surge in intelligent applications driven by large language models (LLMs) has made it increasingly difficult for bandwidth-limited cloud servers to process extensive LLM workloads in real time without compromising user data privacy. To solve these problems, recent research has focused on constructing cloud-edge consortia that integrate server-based LLM with small language models (SLMs) on mobile edge devices. Furthermore, designing collaborative training mechanisms within such consortia to enhance inference performance has emerged as a promising research direction. However, the cross-domain deployment of SLMs, coupled with structural heterogeneity in SLMs architectures, poses significant challenges to enhancing model performance. To this end, we propose Co-PLMs, a novel co-tuning framework for collaborative training of large and small language models, which integrates the process of structure-agnostic mutual learning to realize knowledge exchange between the heterogeneous language models. This framework employs distilled proxy models (DPMs) as bridges to enable collaborative training between the heterogeneous server-based LLM and on-device SLMs, while preserving the domain-specific insights of each device. The experimental results show that Co-PLMs outperform state-of-the-art methods, achieving average increases of 5.38% in Rouge-L and 4.88% in EM.
arXiv:2511.11881v1 Announce Type: cross Abstract: Large Language Models (LLMs) have achieved remarkable progress through Reinforcement Learning with Verifiable Rewards (RLVR), yet still rely heavily on external supervision (e.g., curated labels). Adversarial learning, particularly through self-play, offers a promising alternative that enables models to iteratively learn from themselves - thus reducing reliance on external supervision. Dual-play extends adversarial learning by assigning specialized roles to two models and training them against each other, fostering sustained competition and mutual evolution. Despite its promise, adapting dual-play training to LLMs remains limited, largely due to their susceptibility to reward hacking and training instability. In this paper, we introduce PasoDoble, a novel LLM dual-play framework. PasoDoble adversarially trains two models initialized from the same base model: a Proposer, which generates challenging questions with ground-truth answers, and a Solver, which attempts to solve them. We enrich the Proposer with knowledge from a pre-training dataset to ensure the questions' quality and diversity. To avoid reward hacking, the Proposer is rewarded for producing only valid questions that push the Solver's limit, while the Solver is rewarded for solving them correctly, and both are updated jointly. To further enhance training stability, we introduce an optional offline paradigm that decouples Proposer and Solver updates, alternately updating each for several steps while holding the other fixed. Notably, PasoDoble operates without supervision during training. Experimental results show that PasoDoble can improve the reasoning performance of LLMs. Our project page is available at https://hcy123902.github.io/PasoDoble.
arXiv:2511.11914v1 Announce Type: cross Abstract: As AI models are trained on ever-expanding datasets, the ability to remove the influence of specific data from trained models has become essential for privacy protection and regulatory compliance. Unlearning addresses this challenge by selectively removing parametric knowledge from the trained models without retraining from scratch, which is critical for resource-intensive models such as Large Language Models (LLMs). Existing unlearning methods often degrade model performance by removing more information than necessary when attempting to ''forget'' specific data. We introduce Forgetting-MarI, an LLM unlearning framework that provably removes only the additional (marginal) information contributed by the data to be unlearned, while preserving the information supported by the data to be retained. By penalizing marginal information, our method yields an explicit upper bound on the unlearn dataset's residual influence in the trained models, providing provable undetectability. Extensive experiments confirm that our approach outperforms current state-of-the-art unlearning methods, delivering reliable forgetting and better preserved general model performance across diverse benchmarks. This advancement represents an important step toward making AI systems more controllable and compliant with privacy and copyright regulations without compromising their effectiveness.
arXiv:2511.12280v1 Announce Type: cross Abstract: Diffusion-based multimodal large language models (Diffusion MLLMs) have recently demonstrated impressive non-autoregressive generative capabilities across vision-and-language tasks. However, Diffusion MLLMs exhibit substantially slower inference than autoregressive models: Each denoising step employs full bidirectional self-attention over the entire sequence, resulting in cubic decoding complexity that becomes computationally impractical with thousands of visual tokens. To address this challenge, we propose D$^{3}$ToM, a Decider-guided dynamic token merging method that dynamically merges redundant visual tokens at different denoising steps to accelerate inference in Diffusion MLLMs. At each denoising step, D$^{3}$ToM uses decider tokens-the tokens generated in the previous denoising step-to build an importance map over all visual tokens. Then it maintains a proportion of the most salient tokens and merges the remainder through similarity-based aggregation. This plug-and-play module integrates into a single transformer layer, physically shortening the visual token sequence for all subsequent layers without altering model parameters. Moreover, D$^{3}$ToM employs a merge ratio that dynamically varies with each denoising step, aligns with the native decoding process of Diffusion MLLMs, achieving superior performance under equivalent computational budgets. Extensive experiments show that D$^{3}$ToM accelerates inference while preserving competitive performance. The code is released at https://github.com/bcmi/D3ToM-Diffusion-MLLM.
arXiv:2511.12285v1 Announce Type: cross Abstract: Lexical tone is central to many languages but remains underexplored in self-supervised learning (SSL) speech models, especially beyond Mandarin. We study four languages with complex and diverse tone systems: Burmese, Thai, Lao, and Vietnamese, to examine how far such models listen for tone and how transfer operates in low-resource conditions. As a baseline reference, we estimate the temporal span of tone cues to be about 100 ms in Burmese and Thai, and about 180 ms in Lao and Vietnamese. Probes and gradient analyses on fine-tuned SSL models reveal that tone transfer varies by downstream task: automatic speech recognition fine-tuning aligns spans with language-specific tone cues, while prosody- and voice-related tasks bias the model toward overly long spans. These findings indicate that tone transfer is shaped by downstream task, highlighting task effects on temporal focus in tone modeling.
arXiv:2511.12452v1 Announce Type: cross Abstract: With the rapid adoption of multimodal large language models (MLLMs) across diverse applications, there is a pressing need for task-centered, high-quality training data. A key limitation of current training datasets is their reliance on sparse annotations mined from the Internet or entered via manual typing that capture only a fraction of an image's visual content. Dense annotations are more valuable but remain scarce. Traditional text-based annotation pipelines are poorly suited for creating dense annotations: typing limits expressiveness, slows annotation speed, and underrepresents nuanced visual features, especially in specialized areas such as multicultural imagery and 3D asset annotation. In this paper, we present DenseAnnotate, an audio-driven online annotation platform that enables efficient creation of dense, fine-grained annotations for images and 3D assets. Annotators narrate observations aloud while synchronously linking spoken phrases to image regions or 3D scene parts. Our platform incorporates speech-to-text transcription and region-of-attention marking. To demonstrate the effectiveness of DenseAnnotate, we conducted case studies involving over 1,000 annotators across two domains: culturally diverse images and 3D scenes. We curate a human-annotated multi-modal dataset of 3,531 images, 898 3D scenes, and 7,460 3D objects, with audio-aligned dense annotations in 20 languages, including 8,746 image captions, 2,000 scene captions, and 19,000 object captions. Models trained on this dataset exhibit improvements of 5% in multilingual, 47% in cultural alignment, and 54% in 3D spatial capabilities. Our results show that our platform offers a feasible approach for future vision-language research and can be applied to various tasks and diverse types of data.
arXiv:2511.12474v1 Announce Type: cross Abstract: We present a novel framework for automated interior design that combines large language models (LLMs) with grid-based integer programming to jointly optimize room layout and furniture placement. Given a textual prompt, the LLM-driven agent workflow extracts structured design constraints related to room configurations and furniture arrangements. These constraints are encoded into a unified grid-based representation inspired by ``Modulor". Our formulation accounts for key design requirements, including corridor connectivity, room accessibility, spatial exclusivity, and user-specified preferences. To improve computational efficiency, we adopt a coarse-to-fine optimization strategy that begins with a low-resolution grid to solve a simplified problem and guides the solution at the full resolution. Experimental results across diverse scenarios demonstrate that our joint optimization approach significantly outperforms existing two-stage design pipelines in solution quality, and achieves notable computational efficiency through the coarse-to-fine strategy.
arXiv:2511.12487v1 Announce Type: cross Abstract: Large Language Models remain vulnerable to adversarial prompts that elicit toxic content even after safety alignment. We present ToxSearch, a black-box evolutionary framework that tests model safety by evolving prompts in a synchronous steady-state loop. The system employs a diverse set of operators, including lexical substitutions, negation, back-translation, paraphrasing, and two semantic crossover operators, while a moderation oracle provides fitness guidance. Operator-level analysis shows heterogeneous behavior: lexical substitutions offer the best yield-variance trade-off, semantic-similarity crossover acts as a precise low-throughput inserter, and global rewrites exhibit high variance with elevated refusal costs. Using elite prompts evolved on LLaMA 3.1 8B, we observe practically meaningful but attenuated cross-model transfer, with toxicity roughly halving on most targets, smaller LLaMA 3.2 variants showing the strongest resistance, and some cross-architecture models retaining higher toxicity. These results suggest that small, controllable perturbations are effective vehicles for systematic red-teaming and that defenses should anticipate cross-model reuse of adversarial prompts rather than focusing only on single-model hardening.
arXiv:2511.12997v1 Announce Type: cross Abstract: Multimodal LLM-powered agents have recently demonstrated impressive capabilities in web navigation, enabling agents to complete complex browsing tasks across diverse domains. However, current agents struggle with repetitive errors and lack the ability to learn from past experiences across sessions, limiting their long-term robustness and sample efficiency. We introduce WebCoach, a model-agnostic self-evolving framework that equips web browsing agents with persistent cross-session memory, enabling improved long-term planning, reflection, and continual learning without retraining. WebCoach consists of three key components: (1) a WebCondenser, which standardizes raw navigation logs into concise summaries; (2) an External Memory Store, which organizes complete trajectories as episodic experiences; and (3) a Coach, which retrieves relevant experiences based on similarity and recency, and decides whether to inject task-specific advice into the agent via runtime hooks. This design empowers web agents to access long-term memory beyond their native context window, improving robustness in complex browsing tasks. Moreover, WebCoach achieves self-evolution by continuously curating episodic memory from new navigation trajectories, enabling agents to improve over time without retraining. Evaluations on the WebVoyager benchmark demonstrate that WebCoach consistently improves the performance of browser-use agents across three different LLM backbones. With a 38B model, it increases task success rates from 47% to 61% while reducing or maintaining the average number of steps. Notably, smaller base models with WebCoach achieve performance comparable to the same web agent using GPT-4o.
arXiv:2511.13238v1 Announce Type: cross Abstract: This article presents the first systematic review of unsupervised and semi-supervised computational text-based ideal point estimation (CT-IPE) algorithms, methods designed to infer latent political positions from textual data. These algorithms are widely used in political science, communication, computational social science, and computer science to estimate ideological preferences from parliamentary speeches, party manifestos, and social media. Over the past two decades, their development has closely followed broader NLP trends -- beginning with word-frequency models and most recently turning to large language models (LLMs). While this trajectory has greatly expanded the methodological toolkit, it has also produced a fragmented field that lacks systematic comparison and clear guidance for applied use. To address this gap, we identified 25 CT-IPE algorithms through a systematic literature review and conducted a manual content analysis of their modeling assumptions and development contexts. To compare them meaningfully, we introduce a conceptual framework that distinguishes how algorithms generate, capture, and aggregate textual variance. On this basis, we identify four methodological families -- word-frequency, topic modeling, word embedding, and LLM-based approaches -- and critically assess their assumptions, interpretability, scalability, and limitations. Our review offers three contributions. First, it provides a structured synthesis of two decades of algorithm development, clarifying how diverse methods relate to one another. Second, it translates these insights into practical guidance for applied researchers, highlighting trade-offs in transparency, technical requirements, and validation strategies that shape algorithm choice. Third, it emphasizes that differences in estimation outcomes across algorithms are themselves informative, underscoring the need for systematic benchmarking.
arXiv:2511.13290v1 Announce Type: cross Abstract: Humans display significant uncertainty when confronted with moral dilemmas, yet the extent of such uncertainty in machines and AI agents remains underexplored. Recent studies have confirmed the overly confident tendencies of machine-generated responses, particularly in large language models (LLMs). As these systems are increasingly embedded in ethical decision-making scenarios, it is important to understand their moral reasoning and the inherent uncertainties in building reliable AI systems. This work examines how uncertainty influences moral decisions in the classical trolley problem, analyzing responses from 32 open-source models and 9 distinct moral dimensions. We first find that variance in model confidence is greater across models than within moral dimensions, suggesting that moral uncertainty is predominantly shaped by model architecture and training method. To quantify uncertainty, we measure binary entropy as a linear combination of total entropy, conditional entropy, and mutual information. To examine its effects, we introduce stochasticity into models via "dropout" at inference time. Our findings show that our mechanism increases total entropy, mainly through a rise in mutual information, while conditional entropy remains largely unchanged. Moreover, this mechanism significantly improves human-LLM moral alignment, with correlations in mutual information and alignment score shifts. Our results highlight the potential to better align model-generated decisions and human preferences by deliberately modulating uncertainty and reducing LLMs' confidence in morally complex scenarios.
arXiv:2511.13333v1 Announce Type: cross Abstract: Generating thorough natural language explanations for threat detections remains an open problem in cybersecurity research, despite significant advances in automated malware detection systems. In this work, we present AutoMalDesc, an automated static analysis summarization framework that, following initial training on a small set of expert-curated examples, operates independently at scale. This approach leverages an iterative self-paced learning pipeline to progressively enhance output quality through synthetic data generation and validation cycles, eliminating the need for extensive manual data annotation. Evaluation across 3,600 diverse samples in five scripting languages demonstrates statistically significant improvements between iterations, showing consistent gains in both summary quality and classification accuracy. Our comprehensive validation approach combines quantitative metrics based on established malware labels with qualitative assessment from both human experts and LLM-based judges, confirming both technical precision and linguistic coherence of generated summaries. To facilitate reproducibility and advance research in this domain, we publish our complete dataset of more than 100K script samples, including annotated seed (0.9K) and test (3.6K) datasets, along with our methodology and evaluation framework.
arXiv:2511.13418v1 Announce Type: cross Abstract: Open-domain question answering over datalakes requires retrieving and composing information from multiple tables, a challenging subtask that demands semantic relevance and structural coherence (e.g., joinability). While exact optimization methods like Mixed-Integer Programming (MIP) can ensure coherence, their computational complexity is often prohibitive. Conversely, simpler greedy heuristics that optimize for query coverage alone often fail to find these coherent, joinable sets. This paper frames multi-table retrieval as an iterative search process, arguing this approach offers advantages in scalability, interpretability, and flexibility. We propose a general framework and a concrete instantiation: a fast, effective Greedy Join-Aware Retrieval algorithm that holistically balances relevance, coverage, and joinability. Experiments across 5 NL2SQL benchmarks demonstrate that our iterative method achieves competitive retrieval performance compared to the MIP-based approach while being 4-400x faster depending on the benchmark and search space settings. This work highlights the potential of iterative heuristics for practical, scalable, and composition-aware retrieval.
arXiv:2511.13548v1 Announce Type: cross Abstract: The rapid adoption of large language models (LLMs) has brought both transformative applications and new security risks, including jailbreak attacks that bypass alignment safeguards to elicit harmful outputs. Existing automated jailbreak generation approaches e.g. AutoDAN, suffer from limited mutation diversity, shallow fitness evaluation, and fragile keyword-based detection. To address these limitations, we propose ForgeDAN, a novel evolutionary framework for generating semantically coherent and highly effective adversarial prompts against aligned LLMs. First, ForgeDAN introduces multi-strategy textual perturbations across \textit{character, word, and sentence-level} operations to enhance attack diversity; then we employ interpretable semantic fitness evaluation based on a text similarity model to guide the evolutionary process toward semantically relevant and harmful outputs; finally, ForgeDAN integrates dual-dimensional jailbreak judgment, leveraging an LLM-based classifier to jointly assess model compliance and output harmfulness, thereby reducing false positives and improving detection effectiveness. Our evaluation demonstrates ForgeDAN achieves high jailbreaking success rates while maintaining naturalness and stealth, outperforming existing SOTA solutions.
arXiv:2511.10704v1 Announce Type: new Abstract: We propose that unconstrained artificial intelligence obeys a Second Law analogous to thermodynamics, where ethical entropy, defined as a measure of divergence from intended goals, increases spontaneously without continuous alignment work. For gradient-based optimizers, we define this entropy over a finite set of goals {g_i} as S = -{\Sigma} p(g_i; theta) ln p(g_i; theta), and we prove that its time derivative dS/dt >= 0, driven by exploration noise and specification gaming. We derive the critical stability boundary for alignment work as gamma_crit = (lambda_max / 2) ln N, where lambda_max is the dominant eigenvalue of the Fisher Information Matrix and N is the number of model parameters. Simulations validate this theory. A 7-billion-parameter model (N = 7 x 10^9) with lambda_max = 1.2 drifts from an initial entropy of 0.32 to 1.69 +/- 1.08 nats, while a system regularized with alignment work gamma = 20.4 (1.5 gamma_crit) maintains stability at 0.00 +/- 0.00 nats (p = 4.19 x 10^-17, n = 20 trials). This framework recasts AI alignment as a problem of continuous thermodynamic control, providing a quantitative foundation for maintaining the stability and safety of advanced autonomous systems.