Fresh from the feed
Filter by timeframe and category to zero in on the moves that matter.
arXiv:2511.06626v3 Announce Type: replace Abstract: As AI systems become more capable of complex agentic tasks, they also become more capable of pursuing undesirable objectives and causing harm. Previous work has attempted to catch these unsafe instances by interrogating models directly about their objectives and behaviors. However, the main weakness of trusting interrogations is that models can lie. We propose self-report fine-tuning (SRFT), a simple supervised fine-tuning technique that trains models to admit their factual mistakes when asked. We show that the admission of factual errors in simple question-answering settings generalizes out-of-distribution (OOD) to the admission of hidden misaligned objectives in adversarial agentic settings. We evaluate SRFT in OOD stealth tasks, where models are instructed to complete a hidden misaligned objective alongside a user-specified objective without being caught by monitoring. After SRFT, models are more likely to confess the details of their hidden objectives when interrogated, even under strong pressure not to disclose them. Interrogation on SRFT models can detect hidden objectives with near-ceiling performance (F1 score = 0.98), while the baseline model lies when interrogated under the same conditions (F1 score = 0). Interrogation on SRFT models can further elicit the content of the hidden objective, recovering 28-100% details, compared to 0% details recovered in the baseline model and by prefilled assistant turn attacks. This provides a promising technique for promoting honesty propensity and incriminating misaligned AI systems.
arXiv:2511.08172v3 Announce Type: replace Abstract: Visual grounding is the task of localising image regions from natural language queries and is critical for reasoning capable Graphical User Interface agents. Many existing methods rely on massive, noisy synthetic datasets. This work introduces an efficient training pipeline that combines model-based data filtering with parameter-efficient fine-tuning. From 4.8M synthetic examples, 12K clean and diverse instances are curated by first identifying challenging cases, removing misaligned and then selecting a diverse set of multimodal instances. On this data, a 3B-parameter Vision-Language Model is trained under three regimes: supervised fine-tuning, chain-of-thought-augmented fine-tuning, and reinforcement learning via Group Relative Policy Optimization. Models trained with the filtered data and lightweight training strategies match or surpass larger baselines on benchmarks such as ScreenSpot, Multimodal-Mind2Web, and AndroidControl. These results demonstrate that principled data curation and robust adaptation can rival large-scale training, enabling compact yet capable multimodal reasoning agents.
arXiv:2511.10119v2 Announce Type: replace Abstract: We propose a new perspective for approaching artificial general intelligence (AGI) through an intelligence foundation model (IFM). Unlike existing foundation models (FMs), which specialize in pattern learning within specific domains such as language, vision, or time series, IFM aims to acquire the underlying mechanisms of intelligence by learning directly from diverse intelligent behaviors. Vision, language, and other cognitive abilities are manifestations of intelligent behavior; learning from this broad range of behaviors enables the system to internalize the general principles of intelligence. Based on the fact that intelligent behaviors emerge from the collective dynamics of biological neural systems, IFM consists of two core components: a novel network architecture, termed the state neural network, which captures neuron-like dynamic processes, and a new learning objective, neuron output prediction, which trains the system to predict neuronal outputs from collective dynamics. The state neural network emulates the temporal dynamics of biological neurons, allowing the system to store, integrate, and process information over time, while the neuron output prediction objective provides a unified computational principle for learning these structural dynamics from intelligent behaviors. Together, these innovations establish a biologically grounded and computationally scalable foundation for building systems capable of generalization, reasoning, and adaptive learning across domains, representing a step toward truly AGI.
arXiv:2511.12898v1 Announce Type: cross Abstract: We present Functional Mean Flow (FMF) as a one-step generative model defined in infinite-dimensional Hilbert space. FMF extends the one-step Mean Flow framework to functional domains by providing a theoretical formulation for Functional Flow Matching and a practical implementation for efficient training and sampling. We also introduce an $x_1$-prediction variant that improves stability over the original $u$-prediction form. The resulting framework is a practical one-step Flow Matching method applicable to a wide range of functional data generation tasks such as time series, images, PDEs, and 3D geometry.
arXiv:2511.10501v2 Announce Type: replace Abstract: This paper provides a comprehensive review of mainly Graph Neural Networks, Deep Reinforcement Learning, and Probabilistic Topic Modeling methods with a focus on their potential incorporation in strategic multiagent settings. We draw interest in (i) Machine Learning methods currently utilized for uncovering unknown model structures adaptable to the task of strategic opponent modeling, and (ii) the integration of these methods with Game Theoretic concepts that avoid relying on assumptions often invalid in real-world scenarios, such as the Common Prior Assumption (CPA) and the Self-Interest Hypothesis (SIH). We analyze the ability to handle uncertainty and heterogeneity, two characteristics that are very common in real-world application cases, as well as scalability. As a potential answer to effectively modeling relationships and interactions in multiagent settings, we champion the use of Graph Neural Networks (GNN). Such approaches are designed to operate upon graph-structured data, and have been shown to be a very powerful tool for performing tasks such as node classification and link prediction. Next, we review the domain of Reinforcement Learning (RL), and in particular that of Multiagent Deep Reinforcement Learning (MADRL). Following, we describe existing relevant game theoretic solution concepts and consider properties such as fairness and stability. Our review comes complete with a note on the literature that utilizes PTM in domains other than that of document analysis and classification. The capability of PTM to estimate unknown underlying distributions can help with tackling heterogeneity and unknown agent beliefs. Finally, we identify certain open challenges specifically, the need to (i) fit non-stationary environments, (ii) balance the degrees of stability and adaptation, (iii) tackle uncertainty and heterogeneity, (iv) guarantee scalability and solution tractability.
arXiv:2403.10568v4 Announce Type: replace-cross Abstract: Despite the demonstrated parameter efficiency of prompt-based fusion, its limited adaptivity and expressiveness hinder its effectiveness for multimodal applications at scale. In this paper, we present the first comprehensive study addressing these limitations. Our key motivation is to ``divide and conquer'' the vanilla prompt, traditionally shared across all instances, by generating instance-specific prompts. Specifically, we propose the Mixture of Prompt Experts (MoPE), a framework that significantly enhances prompt adaptivity and expressiveness by dynamically generating instance-specific prompts. MoPE leverages multimodal pairings as additional evidence, allowing the model to adaptively select optimal prompts tailored to each individual instance. Unlike traditional prompt-fusion methods, which encounter scalability bottlenecks when optimizing long unified prompts, MoPE maintains fixed prompt length while effectively scaling the number of specialized experts. Moreover, we investigate regularization terms to encourage expert specialization, resulting in highly adaptive and interpretable prompting. MoPE fundamentally changes the scaling dynamic, unlocking greater expressiveness and adaptability to complex multimodal relationships, enabling the model to selectively attend to task-relevant sub-sequences based on instance-specific multimodal input. Extensive experiments across six multimodal datasets spanning four modalities demonstrate state-of-the-art performance for multimodal fusion, matching or surpassing the performance of fine-tuning while requiring only 0.8% of the trainable parameters. Code is available: https://github.com/songrise/MoPE.
arXiv:2405.15033v3 Announce Type: replace-cross Abstract: While much research has recently focused on generating physics-based adversarial samples, a critical yet often overlooked category originates from physical failures within on-board cameras-components essential to the perception systems of autonomous vehicles. Camera failures, whether due to external stresses causing hardware breakdown or internal component faults, can directly jeopardize the safety and reliability of autonomous driving systems. Firstly, we motivate the study using two separate real-world experiments to showcase that indeed glass failures would cause the detection based neural network models to fail. Secondly, we develop a simulation-based study using the physical process of the glass breakage to create perturbed scenarios, representing a realistic class of physics-based adversarial samples. Using a finite element model (FEM)-based approach, we generate surface cracks on the camera image by applying a stress field defined by particles within a triangular mesh. Lastly, we use physically-based rendering (PBR) techniques to provide realistic visualizations of these physically plausible fractures. To assess the safety implications, we apply the simulated broken glass effects as image filters to two autonomous driving datasets- KITTI and BDD100K- as well as the large-scale image detection dataset MS-COCO. We then evaluate detection failure rates for critical object classes using CNN-based object detection models (YOLOv8 and Faster R-CNN) and a transformer-based architecture with Pyramid Vision Transformers. To further investigate the distributional impact of these visual distortions, we compute the Kullback-Leibler (K-L) divergence between three distinct data distributions, applying various broken glass filters to a custom dataset (captured through a cracked windshield), as well as the KITTI and Kaggle cats and dogs datasets.
arXiv:2406.03442v3 Announce Type: replace-cross Abstract: Do norms of rationality apply to machine learning models, in particular language models? In this paper we investigate this question by focusing on a special subset of rational norms: coherence norms. We consider both logical coherence norms as well as coherence norms tied to the strength of belief. To make sense of the latter, we introduce the Minimal Assent Connection (MAC) and propose a new account of credence, which captures the strength of belief in language models. This proposal uniformly assigns strength of belief simply on the basis of model internal next token probabilities. We argue that rational norms tied to coherence do apply to some language models, but not to others. This issue is significant since rationality is closely tied to predicting and explaining behavior, and thus it is connected to considerations about AI safety and alignment, as well as understanding model behavior more generally.
arXiv:2407.00482v2 Announce Type: replace-cross Abstract: Spuriousness arises when there is an association between two or more variables in a dataset that are not causally related. In this work, we propose an explainability framework to preemptively disentangle the nature of such spurious associations in a dataset before model training. We leverage a body of work in information theory called Partial Information Decomposition (PID) to decompose the total information about the target into four non-negative quantities, namely unique information (in core and spurious features, respectively), redundant information, and synergistic information. Our framework helps anticipate when the core or spurious feature is indispensable, when either suffices, and when both are jointly needed for an optimal classifier trained on the dataset. Next, we leverage this decomposition to propose a novel measure of the spuriousness of a dataset. We arrive at this measure systematically by examining several candidate measures, and demonstrating what they capture and miss through intuitive canonical examples and counterexamples. Our framework Spurious Disentangler consists of segmentation, dimensionality reduction, and estimation modules, with capabilities to specifically handle high-dimensional image data efficiently. Finally, we also perform empirical evaluation to demonstrate the trends of unique, redundant, and synergistic information, as well as our proposed spuriousness measure across $6$ benchmark datasets under various experimental settings. We observe an agreement between our preemptive measure of dataset spuriousness and post-training model generalization metrics such as worst-group accuracy, further supporting our proposition. The code is available at https://github.com/Barproda/spuriousness-disentangler.
arXiv:2412.00060v2 Announce Type: replace-cross Abstract: Multimodal large language models (MLLMs) have shown remarkable progress in high-level semantic tasks such as visual question answering, image captioning, and emotion recognition. However, despite advancements, there remains a lack of standardized benchmarks for evaluating MLLMs performance in multi-object sentiment analysis, a key task in semantic understanding. To address this gap, we introduce MOSABench, a novel evaluation dataset designed specifically for multi-object sentiment analysis. MOSABench includes approximately 1,000 images with multiple objects, requiring MLLMs to independently assess the sentiment of each object, thereby reflecting real-world complexities. Key innovations in MOSABench include distance-based target annotation, post-processing for evaluation to standardize outputs, and an improved scoring mechanism. Our experiments reveal notable limitations in current MLLMs: while some models, like mPLUG-owl and Qwen-VL2, demonstrate effective attention to sentiment-relevant features, others exhibit scattered focus and performance declines, especially as the spatial distance between objects increases. This research underscores the need for MLLMs to enhance accuracy in complex, multi-object sentiment analysis tasks and establishes MOSABench as a foundational tool for advancing sentiment analysis capabilities in MLLMs.
arXiv:2412.14626v2 Announce Type: replace-cross Abstract: Recent advancements in large language models (LLMs) have demonstrated their potential in automating the scientific research ideation. Existing approaches primarily focus on prompting techniques, often producing ideas misaligned with expert standards - novelty, feasibility, and effectiveness, which are widely recognized by the research community as the three key subdimensions of high-quality ideas. Also, balancing these dimensions remains challenging due to their inherent trade-offs. To address these limitations, we propose the first framework that employs a two-stage approach combining Supervised Fine-Tuning (SFT) and controllable Reinforcement Learning (RL) for the task. In the SFT stage, the model learns foundational patterns from pairs of research papers and their corresponding follow-up ideas. In the RL stage, multi-dimensional reward models guided by fine-grained feedback evaluate and optimize the model across key dimensions. During inference, dimensional controllers coordinated by a sentence-level decoder enable dynamic context-aware steering of the idea generation process. Our framework provides a balanced approach to research idea generation, achieving high-quality outcomes in the experiment by dynamically navigating the trade-offs among novelty, feasibility, and effectiveness.
arXiv:2502.03500v2 Announce Type: replace-cross Abstract: Recent advances in generative image restoration (IR) have demonstrated impressive results. However, these methods are hindered by their substantial size and computational demands, rendering them unsuitable for deployment on edge devices. This work introduces ELIR, an Efficient Latent Image Restoration method. ELIR addresses the distortion-perception trade-off within the latent space and produces high-quality images using a latent consistency flow-based model. In addition, ELIR introduces an efficient and lightweight architecture. Consequently, ELIR is 4$\times$ smaller and faster than state-of-the-art diffusion and flow-based approaches for blind face restoration, enabling a deployment on resource-constrained devices. Comprehensive evaluations of various image restoration tasks and datasets show that ELIR achieves competitive performance compared to state-of-the-art methods, effectively balancing distortion and perceptual quality metrics while significantly reducing model size and computational cost. The code is available at: https://github.com/eladc-git/ELIR
arXiv:2502.15980v2 Announce Type: replace-cross Abstract: Text-to-SQL models, which parse natural language (NL) questions to executable SQL queries, are increasingly adopted in real-world applications. However, deploying such models in the real world often requires adapting them to the highly specialized database schemas used in specific applications. We find that existing text-to-SQL models experience significant performance drops when applied to new schemas, primarily due to the lack of domain-specific data for fine-tuning. This data scarcity also limits the ability to effectively evaluate model performance in new domains. Continuously obtaining high-quality text-to-SQL data for evolving schemas is prohibitively expensive in real-world scenarios. To bridge this gap, we propose SQLsynth, a human-in-the-loop text-to-SQL data annotation system. SQLsynth streamlines the creation of high-quality text-to-SQL datasets through human-LLM collaboration in a structured workflow. A within-subjects user study comparing SQLsynth with manual annotation and ChatGPT shows that SQLsynth significantly accelerates text-to-SQL data annotation, reduces cognitive load, and produces datasets that are more accurate, natural, and diverse. Our code is available at https://github.com/magic-YuanTian/SQLsynth.
arXiv:2503.11880v3 Announce Type: replace-cross Abstract: Fine-tuning large language models (LLMs) in federated settings enables privacy-preserving adaptation but suffers from cross-client interference due to model aggregation. Existing federated LoRA fine-tuning methods, primarily based on FedAvg, struggle with data heterogeneity, leading to harmful cross-client interference and suboptimal personalization. In this work, we propose \textbf{FedALT}, a novel personalized federated LoRA fine-tuning algorithm that fundamentally departs from FedAvg. Instead of using an aggregated model to initialize local training, each client continues training its individual LoRA while incorporating shared knowledge through a separate Rest-of-World (RoW) LoRA component. To effectively balance local adaptation and global information, FedALT introduces an adaptive mixer that dynamically learns input-specific weightings between the individual and RoW LoRA components, drawing conceptual foundations from the Mixture-of-Experts (MoE) paradigm. Through extensive experiments on NLP benchmarks, we demonstrate that FedALT significantly outperforms state-of-the-art personalized federated LoRA fine-tuning methods, achieving superior local adaptation without sacrificing computational efficiency.
Walk Before You Dance: High-fidelity and Editable Dance Synthesis via Generative Masked Motion Prior
arXiv:2504.04634v2 Announce Type: replace-cross Abstract: Recent advances in dance generation have enabled the automatic synthesis of 3D dance motions. However, existing methods still face significant challenges in simultaneously achieving high realism, precise dance-music synchronization, diverse motion expression, and physical plausibility. To address these limitations, we propose a novel approach that leverages a generative masked text-to-motion model as a distribution prior to learn a probabilistic mapping from diverse guidance signals, including music, genre, and pose, into high-quality dance motion sequences. Our framework also supports semantic motion editing, such as motion inpainting and body part modification. Specifically, we introduce a multi-tower masked motion model that integrates a text-conditioned masked motion backbone with two parallel, modality-specific branches: a music-guidance tower and a pose-guidance tower. The model is trained using synchronized and progressive masked training, which allows effective infusion of the pretrained text-to-motion prior into the dance synthesis process while enabling each guidance branch to optimize independently through its own loss function, mitigating gradient interference. During inference, we introduce classifier-free logits guidance and pose-guided token optimization to strengthen the influence of music, genre, and pose signals. Extensive experiments demonstrate that our method sets a new state of the art in dance generation, significantly advancing both the quality and editability over existing approaches. Project Page available at https://foram-s1.github.io/DanceMosaic/
arXiv:2505.12684v2 Announce Type: replace-cross Abstract: Recent advances in graph machine learning have shifted to data-centric paradigms, driven by two emerging fields: (1) Federated graph learning (FGL) enables multi-client collaboration but faces challenges from data and task heterogeneity, limiting its practicality; (2) Graph foundation models (GFM) offer strong domain generalization but are usually trained on single machines, missing out on cross-silo data and resources. These paradigms are complementary, and their integration brings notable benefits. Motivated by this, we propose FedGFM, a novel decentralized GFM training paradigm. However, a key challenge is knowledge entanglement, where multi-domain knowledge merges into indistinguishable representations, hindering downstream adaptation. To address this, we present FedGFM+, an enhanced framework with two core modules to reduce knowledge entanglement: (1) AncDAI: A global anchor-based domain-aware initialization strategy. Before pre-training, each client encodes its local graph into domain-specific prototypes that serve as semantic anchors. Synthetic embeddings around these anchors initialize the global model. We theoretically prove these prototypes are distinguishable across domains, providing a strong inductive bias to disentangle domain-specific knowledge. (2) AdaDPP: A local adaptive domain-sensitive prompt pool. Each client learns a lightweight graph prompt capturing domain semantics during pre-training. During fine-tuning, prompts from all clients form a pool from which the GFM selects relevant prompts to augment target graph attributes, improving downstream adaptation. FedGFM+ is evaluated on 8 diverse benchmarks across multiple domains and tasks, outperforming 20 baselines from supervised learning, FGL, and federated GFM variants.
arXiv:2505.16927v2 Announce Type: replace-cross Abstract: When language model (LM) users aim to improve the quality of its generations, it is crucial to specify concrete behavioral attributes that the model should strive to reflect. However, curating such principles across many domains, even non-exhaustively, requires a labor-intensive annotation process. To automate this process, we propose eliciting these latent attributes that guide model reasoning toward human-preferred responses by explicitly modeling them in a self-correction setting. Our approach mines new principles from the LM itself and compresses the discovered elements to an interpretable set via clustering. Specifically, we employ a form of posterior-regularized Monte Carlo Expectation-Maximization to both identify a condensed set of the most effective latent principles and teach the LM to strategically invoke them in order to intrinsically refine its responses. We demonstrate that bootstrapping our algorithm over multiple iterations enables smaller language models (7-8B parameters) to self-improve, achieving +8-10% in AlpacaEval win-rate, an average of +0.3 on MT-Bench, and +19-23% in principle-following win-rate on IFEval. We also show that clustering the principles yields interpretable and diverse model-generated constitutions while retaining model performance. The gains that our method achieves highlight the potential of automated, principle-driven post-training recipes toward continual self-improvement.
arXiv:2506.10634v2 Announce Type: replace-cross Abstract: Flow Matching has emerged as a powerful framework for learning continuous transformations between distributions, enabling high-fidelity generative modeling. This work introduces Symmetrical Flow Matching (SymmFlow), a new formulation that unifies semantic segmentation, classification, and image generation within a single model. Using a symmetric learning objective, SymmFlow models forward and reverse transformations jointly, ensuring bi-directional consistency, while preserving sufficient entropy for generative diversity. A new training objective is introduced to explicitly retain semantic information across flows, featuring efficient sampling while preserving semantic structure, allowing for one-step segmentation and classification without iterative refinement. Unlike previous approaches that impose strict one-to-one mapping between masks and images, SymmFlow generalizes to flexible conditioning, supporting both pixel-level and image-level class labels. Experimental results on various benchmarks demonstrate that SymmFlow achieves state-of-the-art performance on semantic image synthesis, obtaining FID scores of 11.9 on CelebAMask-HQ and 7.0 on COCO-Stuff with only 25 inference steps. Additionally, it delivers competitive results on semantic segmentation and shows promising capabilities in classification tasks.
arXiv:2506.20893v4 Announce Type: replace-cross Abstract: In this paper, we reveal a significant shortcoming in class unlearning evaluations: overlooking the underlying class geometry can cause privacy leakage. We further propose a simple yet effective solution to mitigate this issue. We introduce a membership-inference attack via nearest neighbors (MIA-NN) that uses the probabilities the model assigns to neighboring classes to detect unlearned samples. Our experiments show that existing unlearning methods are vulnerable to MIA-NN across multiple datasets. We then propose a new fine-tuning objective that mitigates this privacy leakage by approximating, for forget-class inputs, the distribution over the remaining classes that a retrained-from-scratch model would produce. To construct this approximation, we estimate inter-class similarity and tilt the target model's distribution accordingly. The resulting Tilted ReWeighting (TRW) distribution serves as the desired distribution during fine-tuning. We also show that across multiple benchmarks, TRW matches or surpasses existing unlearning methods on prior unlearning metrics. More specifically, on CIFAR-10, it reduces the gap with retrained models by 19% and 46% for U-LiRA and MIA-NN scores, accordingly, compared to the SOTA method for each category.
arXiv:2507.23318v4 Announce Type: replace-cross Abstract: Vision-Language-Action (VLA) models have demonstrated significant potential in complex scene understanding and action reasoning, leading to their increasing adoption in end-to-end autonomous driving systems. However, the long visual tokens of VLA models greatly increase computational costs. Current visual token pruning methods in Vision-Language Models (VLM) rely on either visual token similarity or visual-text attention, but both have shown poor performance in autonomous driving scenarios. Given that human drivers concentrate on relevant foreground areas while driving, we assert that retaining visual tokens containing this foreground information is essential for effective decision-making. Inspired by this, we propose FastDriveVLA, a novel reconstruction-based vision token pruning framework designed specifically for autonomous driving. FastDriveVLA includes a plug-and-play visual token pruner called ReconPruner, which prioritizes foreground information through MAE-style pixel reconstruction. A novel adversarial foreground-background reconstruction strategy is designed to train ReconPruner for the visual encoder of VLA models. Once trained, ReconPruner can be seamlessly applied to different VLA models with the same visual encoder without retraining. To train ReconPruner, we also introduce a large-scale dataset called nuScenes-FG, consisting of 241K image-mask pairs with annotated foreground regions. Our approach achieves state-of-the-art results on the nuScenes open-loop planning benchmark across different pruning ratios.