Walk Before You Dance: High-fidelity and Editable Dance Synthesis via Generative Masked Motion Prior
arXiv:2504.04634v2 Announce Type: replace-cross Abstract: Recent advances in dance generation have enabled the automatic synthesis of 3D dance motions. However, existing methods still face significant challenges in simultaneously achieving high realism, precise dance-music synchronization, diverse motion expression, and physical plausibility. To address these limitations, we propose a novel approach that leverages a generative masked text-to-motion model as a distribution prior to learn a probabilistic mapping from diverse guidance signals, including music, genre, and pose, into high-quality dance motion sequences. Our framework also supports semantic motion editing, such as motion inpainting and body part modification. Specifically, we introduce a multi-tower masked motion model that integrates a text-conditioned masked motion backbone with two parallel, modality-specific branches: a music-guidance tower and a pose-guidance tower. The model is trained using synchronized and progressive masked training, which allows effective infusion of the pretrained text-to-motion prior into the dance synthesis process while enabling each guidance branch to optimize independently through its own loss function, mitigating gradient interference. During inference, we introduce classifier-free logits guidance and pose-guided token optimization to strengthen the influence of music, genre, and pose signals. Extensive experiments demonstrate that our method sets a new state of the art in dance generation, significantly advancing both the quality and editability over existing approaches. Project Page available at https://foram-s1.github.io/DanceMosaic/
Score: 2.80
Engagement proxy: 0
Canonical link: https://arxiv.org/abs/2504.04634