Latest

Fresh from the feed

Filter by timeframe and category to zero in on the moves that matter.

PIGEON: VLM-Driven Object Navigation via Points of Interest Selection
paper
arXiv cs.CV3 days ago

arXiv:2511.13207v1 Announce Type: cross Abstract: Navigating to a specified object in an unknown environment is a fundamental yet challenging capability of embodied intelligence. However, current methods struggle to balance decision frequency with intelligence, resulting in decisions lacking foresight or discontinuous actions. In this work, we propose PIGEON: Point of Interest Guided Exploration for Object Navigation with VLM, maintaining a lightweight and semantically aligned snapshot memory during exploration as semantic input for the exploration strategy. We use a large Visual-Language Model (VLM), named PIGEON-VL, to select Points of Interest (PoI) formed during exploration and then employ a lower-level planner for action output, increasing the decision frequency. Additionally, this PoI-based decision-making enables the generation of Reinforcement Learning with Verifiable Reward (RLVR) data suitable for simulators. Experiments on classic object navigation benchmarks demonstrate that our zero-shot transfer method achieves state-of-the-art performance, while RLVR further enhances the model's semantic guidance capabilities, enabling deep reasoning during real-time navigation.

#ai
Score · 2.80
MM-Telco: Benchmarks and Multimodal Large Language Models for Telecom Applications
paper
arXiv cs.CV3 days ago

arXiv:2511.13131v1 Announce Type: cross Abstract: Large Language Models (LLMs) have emerged as powerful tools for automating complex reasoning and decision-making tasks. In telecommunications, they hold the potential to transform network optimization, automate troubleshooting, enhance customer support, and ensure regulatory compliance. However, their deployment in telecom is hindered by domain-specific challenges that demand specialized adaptation. To overcome these challenges and to accelerate the adaptation of LLMs for telecom, we propose MM-Telco, a comprehensive suite of multimodal benchmarks and models tailored for the telecom domain. The benchmark introduces various tasks (both text based and image based) that address various practical real-life use cases such as network operations, network management, improving documentation quality, and retrieval of relevant text and images. Further, we perform baseline experiments with various LLMs and VLMs. The models fine-tuned on our dataset exhibit a significant boost in performance. Our experiments also help analyze the weak areas in the working of current state-of-art multimodal LLMs, thus guiding towards further development and research.

#ai
#llm
#research
Score · 2.80
MEGA-GUI: Multi-stage Enhanced Grounding Agents for GUI Elements
paper
arXiv cs.CV3 days ago

arXiv:2511.13087v1 Announce Type: cross Abstract: Graphical User Interface (GUI) grounding - the task of mapping natural language instructions to screen coordinates - is essential for autonomous agents and accessibility technologies. Existing systems rely on monolithic models or one-shot pipelines that lack modularity and fail under visual clutter and ambiguous instructions. We introduce MEGA-GUI, a multi-stage framework that separates grounding into coarse Region-of-Interest (ROI) selection and fine-grained element grounding, orchestrated by specialized vision-language agents. MEGA-GUI features a bidirectional ROI zoom algorithm that mitigates spatial dilution and a context-aware rewriting agent that reduces semantic ambiguity. Our analysis reveals complementary strengths and weaknesses across vision-language models at different visual scales, and we show that leveraging this modular structure achieves consistently higher accuracy than monolithic approaches. On the visually dense ScreenSpot-Pro benchmark, MEGA-GUI attains 73.18% accuracy, and on the semantically complex OSWorld-G benchmark it reaches 68.63%, surpassing previously reported results. Code and the Grounding Benchmark Toolkit (GBT) are available at https://github.com/samsungsds-research-papers/mega-gui.

#ai
#research
#open_source
Score · 2.80
Real-time prediction of breast cancer sites using deformation-aware graph neural network
paper
arXiv cs.CV3 days ago

arXiv:2511.13082v1 Announce Type: cross Abstract: Early diagnosis of breast cancer is crucial, enabling the establishment of appropriate treatment plans and markedly enhancing patient prognosis. While direct magnetic resonance imaging-guided biopsy demonstrates promising performance in detecting cancer lesions, its practical application is limited by prolonged procedure times and high costs. To overcome these issues, an indirect MRI-guided biopsy that allows the procedure to be performed outside of the MRI room has been proposed, but it still faces challenges in creating an accurate real-time deformable breast model. In our study, we tackled this issue by developing a graph neural network (GNN)-based model capable of accurately predicting deformed breast cancer sites in real time during biopsy procedures. An individual-specific finite element (FE) model was developed by incorporating magnetic resonance (MR) image-derived structural information of the breast and tumor to simulate deformation behaviors. A GNN model was then employed, designed to process surface displacement and distance-based graph data, enabling accurate prediction of overall tissue displacement, including the deformation of the tumor region. The model was validated using phantom and real patient datasets, achieving an accuracy within 0.2 millimeters (mm) for cancer node displacement (RMSE) and a dice similarity coefficient (DSC) of 0.977 for spatial overlap with actual cancerous regions. Additionally, the model enabled real-time inference and achieved a speed-up of over 4,000 times in computational cost compared to conventional FE simulations. The proposed deformation-aware GNN model offers a promising solution for real-time tumor displacement prediction in breast biopsy, with high accuracy and real-time capability. Its integration with clinical procedures could significantly enhance the precision and efficiency of breast cancer diagnosis.

#research
Score · 2.80
TR-Gaussians: High-fidelity Real-time Rendering of Planar Transmission and Reflection with 3D Gaussian Splatting
paper
arXiv cs.CV3 days ago

arXiv:2511.13009v1 Announce Type: cross Abstract: We propose Transmission-Reflection Gaussians (TR-Gaussians), a novel 3D-Gaussian-based representation for high-fidelity rendering of planar transmission and reflection, which are ubiquitous in indoor scenes. Our method combines 3D Gaussians with learnable reflection planes that explicitly model the glass planes with view-dependent reflectance strengths. Real scenes and transmission components are modeled by 3D Gaussians and the reflection components are modeled by the mirrored Gaussians with respect to the reflection plane. The transmission and reflection components are blended according to a Fresnel-based, view-dependent weighting scheme, allowing for faithful synthesis of complex appearance effects under varying viewpoints. To effectively optimize TR-Gaussians, we develop a multi-stage optimization framework incorporating color and geometry constraints and an opacity perturbation mechanism. Experiments on different datasets demonstrate that TR-Gaussians achieve real-time, high-fidelity novel view synthesis in scenes with planar transmission and reflection, and outperform state-of-the-art approaches both quantitatively and qualitatively.

#ai
Score · 2.80
Scalable Vision-Guided Crop Yield Estimation
paper
arXiv cs.CV3 days ago

arXiv:2511.12999v1 Announce Type: cross Abstract: Precise estimation and uncertainty quantification for average crop yields are critical for agricultural monitoring and decision making. Existing data collection methods, such as crop cuts in randomly sampled fields at harvest time, are relatively time-consuming. Thus, we propose an approach based on prediction-powered inference (PPI) to supplement these crop cuts with less time-consuming field photos. After training a computer vision model to predict the ground truth crop cut yields from the photos, we learn a ``control function" that recalibrates these predictions with the spatial coordinates of each field. This enables fields with photos but not crop cuts to be leveraged to improve the precision of zone-wide average yield estimates. Our control function is learned by training on a dataset of nearly 20,000 real crop cuts and photos of rice and maize fields in sub-Saharan Africa. To improve precision, we pool training observations across different zones within the same first-level subdivision of each country. Our final PPI-based point estimates of the average yield are provably asymptotically unbiased and cannot increase the asymptotic variance beyond that of the natural baseline estimator -- the sample average of the crop cuts -- as the number of fields grows. We also propose a novel bias-corrected and accelerated (BCa) bootstrap to construct accompanying confidence intervals. Even in zones with as few as 20 fields, the point estimates show significant empirical improvement over the baseline, increasing the effective sample size by as much as 73% for rice and by 12-23% for maize. The confidence intervals are accordingly shorter at minimal cost to empirical finite-sample coverage. This demonstrates the potential for relatively low-cost images to make area-based crop insurance more affordable and thus spur investment into sustainable agricultural practices.

#ai
Score · 2.80
Angular Gradient Sign Method: Uncovering Vulnerabilities in Hyperbolic Networks
paper
arXiv cs.CV3 days ago

arXiv:2511.12985v1 Announce Type: cross Abstract: Adversarial examples in neural networks have been extensively studied in Euclidean geometry, but recent advances in \textit{hyperbolic networks} call for a reevaluation of attack strategies in non-Euclidean geometries. Existing methods such as FGSM and PGD apply perturbations without regard to the underlying hyperbolic structure, potentially leading to inefficient or geometrically inconsistent attacks. In this work, we propose a novel adversarial attack that explicitly leverages the geometric properties of hyperbolic space. Specifically, we compute the gradient of the loss function in the tangent space of hyperbolic space, decompose it into a radial (depth) component and an angular (semantic) component, and apply perturbation derived solely from the angular direction. Our method generates adversarial examples by focusing perturbations in semantically sensitive directions encoded in angular movement within the hyperbolic geometry. Empirical results on image classification, cross-modal retrieval tasks and network architectures demonstrate that our attack achieves higher fooling rates than conventional adversarial attacks, while producing high-impact perturbations with deeper insights into vulnerabilities of hyperbolic embeddings. This work highlights the importance of geometry-aware adversarial strategies in curved representation spaces and provides a principled framework for attacking hierarchical embeddings.

Score · 2.80
SafeGRPO: Self-Rewarded Multimodal Safety Alignment via Rule-Governed Policy Optimization
paper
arXiv cs.CV3 days ago

arXiv:2511.12982v1 Announce Type: cross Abstract: Multimodal large language models (MLLMs) have demonstrated impressive reasoning and instruction-following capabilities, yet their expanded modality space introduces new compositional safety risks that emerge from complex text-image interactions. Such cross-modal couplings can produce unsafe semantics even when individual inputs are benign, exposing the fragile safety awareness of current MLLMs. While recent works enhance safety by guiding models to reason about potential risks, unregulated reasoning traces may compromise alignment; although Group Relative Policy Optimization (GRPO) offers self-rewarded refinement without human supervision, it lacks verifiable signals for reasoning safety. To address this, we propose SafeGRPO a self-rewarded multimodal safety alignment framework that integrates rule-governed reward construction into GRPO, enabling interpretable and verifiable optimization of reasoning safety. Built upon the constructed SafeTag-VL-3K dataset with explicit visual, textual, and combined safety tags, SafeGRPO performs step-guided safety thinking to enforce structured reasoning and behavior alignment, substantially improving multimodal safety awareness, compositional robustness, and reasoning stability across diverse benchmarks without sacrificing general capabilities.

#llm
Score · 2.80
Inertia-Informed Orientation Priors for Event-Based Optical Flow Estimation
paper
arXiv cs.CV3 days ago

arXiv:2511.12961v1 Announce Type: cross Abstract: Event cameras, by virtue of their working principle, directly encode motion within a scene. Many learning-based and model-based methods exist that estimate event-based optical flow, however the temporally dense yet spatially sparse nature of events poses significant challenges. To address these issues, contrast maximization (CM) is a prominent model-based optimization methodology that estimates the motion trajectories of events within an event volume by optimally warping them. Since its introduction, the CM framework has undergone a series of refinements by the computer vision community. Nonetheless, it remains a highly non-convex optimization problem. In this paper, we introduce a novel biologically-inspired hybrid CM method for event-based optical flow estimation that couples visual and inertial motion cues. Concretely, we propose the use of orientation maps, derived from camera 3D velocities, as priors to guide the CM process. The orientation maps provide directional guidance and constrain the space of estimated motion trajectories. We show that this orientation-guided formulation leads to improved robustness and convergence in event-based optical flow estimation. The evaluation of our approach on the MVSEC, DSEC, and ECD datasets yields superior accuracy scores over the state of the art.

#ai
#research
Score · 2.80
Yanyun-3: Enabling Cross-Platform Strategy Game Operation with Vision-Language Models
paper
arXiv cs.CV3 days ago

arXiv:2511.12937v1 Announce Type: cross Abstract: Automated operation in cross-platform strategy games demands agents with robust generalization across diverse user interfaces and dynamic battlefield conditions. While vision-language models (VLMs) have shown considerable promise in multimodal reasoning, their application to complex human-computer interaction scenarios--such as strategy gaming--remains largely unexplored. Here, we introduce Yanyun-3, a general-purpose agent framework that, for the first time, enables autonomous cross-platform operation across three heterogeneous strategy game environments. By integrating the vision-language reasoning of Qwen2.5-VL with the precise execution capabilities of UI-TARS, Yanyun-3 successfully performs core tasks including target localization, combat resource allocation, and area control. Through systematic ablation studies, we evaluate the effects of various multimodal data combinations--static images, multi-image sequences, and videos--and propose the concept of combination granularity to differentiate between intra-sample fusion and inter-sample mixing strategies. We find that a hybrid strategy, which fuses multi-image and video data while mixing in static images (MV+S), substantially outperforms full fusion: it reduces inference time by 63% and boosts the BLEU-4 score by a factor of 12 (from 4.81% to 62.41%, approximately 12.98x). Operating via a closed-loop pipeline of screen capture, model inference, and action execution, the agent demonstrates strong real-time performance and cross-platform generalization. Beyond providing an efficient solution for strategy game automation, our work establishes a general paradigm for enhancing VLM performance through structured multimodal data organization, offering new insights into the interplay between static perception and dynamic reasoning in embodied intelligence.

#ai
Score · 2.80
BrainNormalizer: Anatomy-Informed Pseudo-Healthy Brain Reconstruction from Tumor MRI via Edge-Guided ControlNet
paper
arXiv cs.CV3 days ago

arXiv:2511.12853v1 Announce Type: cross Abstract: Brain tumors are among the most clinically significant neurological diseases and remain a major cause of morbidity and mortality due to their aggressive growth and structural heterogeneity. As tumors expand, they induce substantial anatomical deformation that disrupts both local tissue organization and global brain architecture, complicating diagnosis, treatment planning, and surgical navigation. Yet a subject-specific reference of how the brain would appear without tumor-induced changes is fundamentally unobtainable in clinical practice. We present BrainNormalizer, an anatomy-informed diffusion framework that reconstructs pseudo-healthy MRIs directly from tumorous scans by conditioning the generative process on boundary cues extracted from the subject's own anatomy. This boundary-guided conditioning enables anatomically plausible pseudo-healthy reconstruction without requiring paired non-tumorous and tumorous scans. BrainNormalizer employs a two-stage training strategy. The pretrained diffusion model is first adapted through inpainting-based fine-tuning on tumorous and non-tumorous scans. Next, an edge-map-guided ControlNet branch is trained to inject fine-grained anatomical contours into the frozen decoder while preserving learned priors. During inference, a deliberate misalignment strategy pairs tumorous inputs with non-tumorous prompts and mirrored contralateral edge maps, leveraging hemispheric correspondence to guide reconstruction. On the BraTS2020 dataset, BrainNormalizer achieves strong quantitative performance and qualitatively produces anatomically plausible reconstructions in tumor-affected regions while retaining overall structural coherence. BrainNormalizer provides clinically reliable anatomical references for treatment planning and supports new research directions in counterfactual modeling and tumor-induced deformation analysis.

#ai
#research
Score · 2.80
Improving the Generalisation of Learned Reconstruction Frameworks
paper
arXiv cs.CV3 days ago

arXiv:2511.12730v1 Announce Type: cross Abstract: Ensuring proper generalization is a critical challenge in applying data-driven methods for solving inverse problems in imaging, as neural networks reconstructing an image must perform well across varied datasets and acquisition geometries. In X-ray Computed Tomography (CT), convolutional neural networks (CNNs) are widely used to filter the projection data but are ill-suited for this task as they apply grid-based convolutions to the sinogram, which inherently lies on a line manifold, not a regular grid. The CNNs, unaware of the geometry, are implicitly tied to it and require an excessive amount of parameters as they must infer the relations between measurements from the data rather than from prior information. The contribution of this paper is twofold. First, we introduce a graph data structure to represent CT acquisition geometries and tomographic data, providing a detailed explanation of the graph's structure for circular, cone-beam geometries. Second, we propose GLM, a hybrid neural network architecture that leverages both graph and grid convolutions to process tomographic data. We demonstrate that GLM outperforms CNNs when performance is quantified in terms of structural similarity and peak signal-to-noise ratio, despite the fact that GLM uses only a fraction of the trainable parameters. Compared to CNNs, GLM also requires significantly less training time and memory, and its memory requirements scale better. Crucially, GLM demonstrates robust generalization to unseen variations in the acquisition geometry, like when training only on fully sampled CT data and then testing on sparse-view CT data.

#ai
#research
Score · 2.80
Predicting upcoming visual features during eye movements yields scene representations aligned with human visual cortex
paper
arXiv cs.CV3 days ago

arXiv:2511.12715v1 Announce Type: cross Abstract: Scenes are complex, yet structured collections of parts, including objects and surfaces, that exhibit spatial and semantic relations to one another. An effective visual system therefore needs unified scene representations that relate scene parts to their location and their co-occurrence. We hypothesize that this structure can be learned self-supervised from natural experience by exploiting the temporal regularities of active vision: each fixation reveals a locally-detailed glimpse that is statistically related to the previous one via co-occurrence and saccade-conditioned spatial regularities. We instantiate this idea with Glimpse Prediction Networks (GPNs) -- recurrent models trained to predict the feature embedding of the next glimpse along human-like scanpaths over natural scenes. GPNs successfully learn co-occurrence structure and, when given relative saccade location vectors, show sensitivity to spatial arrangement. Furthermore, recurrent variants of GPNs were able to integrate information across glimpses into a unified scene representation. Notably, these scene representations align strongly with human fMRI responses during natural-scene viewing across mid/high-level visual cortex. Critically, GPNs outperform architecture- and dataset-matched controls trained with explicit semantic objectives, and match or exceed strong modern vision baselines, leaving little unique variance for those alternatives. These results establish next-glimpse prediction during active vision as a biologically plausible, self-supervised route to brain-aligned scene representations learned from natural visual experience.

#ai
Score · 2.80
Linear time small coresets for k-mean clustering of segments with applications
paper
arXiv cs.CV3 days ago

arXiv:2511.12564v1 Announce Type: cross Abstract: We study the $k$-means problem for a set $\mathcal{S} \subseteq \mathbb{R}^d$ of $n$ segments, aiming to find $k$ centers $X \subseteq \mathbb{R}^d$ that minimize $D(\mathcal{S},X) := \sum_{S \in \mathcal{S}} \min_{x \in X} D(S,x)$, where $D(S,x) := \int_{p \in S} |p - x| dp$ measures the total distance from each point along a segment to a center. Variants of this problem include handling outliers, employing alternative distance functions such as M-estimators, weighting distances to achieve balanced clustering, or enforcing unique cluster assignments. For any $\varepsilon > 0$, an $\varepsilon$-coreset is a weighted subset $C \subseteq \mathbb{R}^d$ that approximates $D(\mathcal{S},X)$ within a factor of $1 \pm \varepsilon$ for any set of $k$ centers, enabling efficient streaming, distributed, or parallel computation. We propose the first coreset construction that provably handles arbitrary input segments. For constant $k$ and $\varepsilon$, it produces a coreset of size $O(\log^2 n)$ computable in $O(nd)$ time. Experiments, including a real-time video tracking application, demonstrate substantial speedups with minimal loss in clustering accuracy, confirming both the practical efficiency and theoretical guarantees of our method.

#ai
#research
Score · 2.80
BSO: Binary Spiking Online Optimization Algorithm
paper
arXiv cs.CV3 days ago

arXiv:2511.12502v1 Announce Type: cross Abstract: Binary Spiking Neural Networks (BSNNs) offer promising efficiency advantages for resource-constrained computing. However, their training algorithms often require substantial memory overhead due to latent weights storage and temporal processing requirements. To address this issue, we propose Binary Spiking Online (BSO) optimization algorithm, a novel online training algorithm that significantly reduces training memory. BSO directly updates weights through flip signals under the online training framework. These signals are triggered when the product of gradient momentum and weights exceeds a threshold, eliminating the need for latent weights during training. To enhance performance, we propose T-BSO, a temporal-aware variant that leverages the inherent temporal dynamics of BSNNs by capturing gradient information across time steps for adaptive threshold adjustment. Theoretical analysis establishes convergence guarantees for both BSO and T-BSO, with formal regret bounds characterizing their convergence rates. Extensive experiments demonstrate that both BSO and T-BSO achieve superior optimization performance compared to existing training methods for BSNNs. The codes are available at https://github.com/hamings1/BSO.

#ai
#product
#open_source
Score · 2.80
DEMIST: \underline{DE}coupled \underline{M}ulti-stream latent d\underline{I}ffusion for Quantitative Myelin Map \underline{S}yn\underline{T}hesis
paper
arXiv cs.CV3 days ago

arXiv:2511.12396v1 Announce Type: cross Abstract: Quantitative magnetization transfer (qMT) imaging provides myelin-sensitive biomarkers, such as the pool size ratio (PSR), which is valuable for multiple sclerosis (MS) assessment. However, qMT requires specialized 20-30 minute scans. We propose DEMIST to synthesize PSR maps from standard T1w and FLAIR images using a 3D latent diffusion model with three complementary conditioning mechanisms. Our approach has two stages: first, we train separate autoencoders for PSR and anatomical images to learn aligned latent representations. Second, we train a conditional diffusion model in this latent space on top of a frozen diffusion foundation backbone. Conditioning is decoupled into: (i) \textbf{semantic} tokens via cross-attention, (ii) \textbf{spatial} per-scale residual hints via a 3D ControlNet branch, and (iii) \textbf{adaptive} LoRA-modulated attention. We include edge-aware loss terms to preserve lesion boundaries and alignment losses to maintain quantitative consistency, while keeping the number of trainable parameters low and retaining the inductive bias of the pretrained model. We evaluate on 163 scans from 99 subjects using 5-fold cross-validation. Our method outperforms VAE, GAN and diffusion baselines on multiple metrics, producing sharper boundaries and better quantitative agreement with ground truth. Our code is publicly available at https://github.com/MedICL-VU/MS-Synthesis-3DcLDM.

#ai
#open_source
Score · 2.80
MTMed3D: A Multi-Task Transformer-Based Model for 3D Medical Imaging
paper
arXiv cs.CV3 days ago

arXiv:2511.12373v1 Announce Type: cross Abstract: In the field of medical imaging, AI-assisted techniques such as object detection, segmentation, and classification are widely employed to alleviate the workload of physicians and doctors. However, single-task models are predominantly used, overlooking the shared information across tasks. This oversight leads to inefficiencies in real-life applications. In this work, we propose MTMed3D, a novel end-to-end Multi-task Transformer-based model to address the limitations of single-task models by jointly performing 3D detection, segmentation, and classification in medical imaging. Our model uses a Transformer as the shared encoder to generate multi-scale features, followed by CNN-based task-specific decoders. The proposed framework was evaluated on the BraTS 2018 and 2019 datasets, achieving promising results across all three tasks, especially in detection, where our method achieves better results than prior works. Additionally, we compare our multi-task model with equivalent single-task variants trained separately. Our multi-task model significantly reduces computational costs and achieves faster inference speed while maintaining comparable performance to the single-task models, highlighting its efficiency advantage. To the best of our knowledge, this is the first work to leverage Transformers for multi-task learning that simultaneously covers detection, segmentation, and classification tasks in 3D medical imaging, presenting its potential to enhance diagnostic processes. The code is available at https://github.com/fanlimua/MTMed3D.git.

#ai
#open_source
Score · 2.80
RAA-MIL: A Novel Framework for Classification of Oral Cytology
paper
arXiv cs.CV3 days ago

arXiv:2511.12269v1 Announce Type: cross Abstract: Cytology is a valuable tool for early detection of oral squamous cell carcinoma (OSCC). However, manual examination of cytology whole slide images (WSIs) is slow, subjective, and depends heavily on expert pathologists. To address this, we introduce the first weakly supervised deep learning framework for patient-level diagnosis of oral cytology whole slide images, leveraging the newly released Oral Cytology Dataset [1], which provides annotated cytology WSIs from ten medical centres across India. Each patient case is represented as a bag of cytology patches and assigned a diagnosis label (Healthy, Benign, Oral Potentially Malignant Disorders (OPMD), OSCC) by an in-house expert pathologist. These patient-level weak labels form a new extension to the dataset. We evaluate a baseline multiple-instance learning (MIL) model and a proposed Region-Affinity Attention MIL (RAA-MIL) that models spatial relationships between regions within each slide. The RAA-MIL achieves an average accuracy of 72.7%, weighted F1-score of 0.69 on an unseen test set, outperforming the baseline. This study establishes the first patient-level weakly supervised benchmark for oral cytology and moves toward reliable AI-assisted digital pathology.

#ai
#research
#product
Score · 2.80
Multimodal RGB-HSI Feature Fusion with Patient-Aware Incremental Heuristic Meta-Learning for Oral Lesion Classification
paper
arXiv cs.CV3 days ago

arXiv:2511.12268v1 Announce Type: cross Abstract: Early detection of oral cancer and potentially malignant disorders is challenging in low-resource settings due to limited annotated data. We present a unified four-class oral lesion classifier that integrates deep RGB embeddings, hyperspectral reconstruction, handcrafted spectral-textural descriptors, and demographic metadata. A pathologist-verified subset of oral cavity images was curated and processed using a fine-tuned ConvNeXt-v2 encoder, followed by RGB-to-HSI reconstruction into 31-band hyperspectral cubes. Haemoglobin-sensitive indices, texture features, and spectral-shape measures were extracted and fused with deep and clinical features. Multiple machine-learning models were assessed with patient-wise validation. We further introduce an incremental heuristic meta-learner (IHML) that combines calibrated base classifiers through probabilistic stacking and patient-level posterior smoothing. On an unseen patient split, the proposed framework achieved a macro F1 of 66.23% and an accuracy of 64.56%. Results demonstrate that hyperspectral reconstruction and uncertainty-aware meta-learning substantially improve robustness for real-world oral lesion screening.

#ai
Score · 2.80
Calibrated Adversarial Sampling: Multi-Armed Bandit-Guided Generalization Against Unforeseen Attacks
paper
arXiv cs.CV3 days ago

arXiv:2511.12265v1 Announce Type: cross Abstract: Deep Neural Networks (DNNs) are known to be vulnerable to various adversarial perturbations. To address the safety concerns arising from these vulnerabilities, adversarial training (AT) has emerged as one of the most effective paradigms for enhancing the robustness of DNNs. However, existing AT frameworks primarily focus on a single or a limited set of attack types, leaving DNNs still exposed to attack types that may be encountered in practice but not addressed during training. In this paper, we propose an efficient fine-tuning method called Calibrated Adversarial Sampling (CAS) to address these issues. From the optimization perspective within the multi-armed bandit framework, it dynamically designs rewards and balances exploration and exploitation by considering the dynamic and interdependent characteristics of multiple robustness dimensions. Experiments on benchmark datasets show that CAS achieves superior overall robustness while maintaining high clean accuracy, providing a new paradigm for robust generalization of DNNs.

#ai
#research
Score · 2.80
Page 42 of 93