paper
arXiv cs.CV
November 18th, 2025 at 5:00 AM

RAA-MIL: A Novel Framework for Classification of Oral Cytology

arXiv:2511.12269v1 Announce Type: cross Abstract: Cytology is a valuable tool for early detection of oral squamous cell carcinoma (OSCC). However, manual examination of cytology whole slide images (WSIs) is slow, subjective, and depends heavily on expert pathologists. To address this, we introduce the first weakly supervised deep learning framework for patient-level diagnosis of oral cytology whole slide images, leveraging the newly released Oral Cytology Dataset [1], which provides annotated cytology WSIs from ten medical centres across India. Each patient case is represented as a bag of cytology patches and assigned a diagnosis label (Healthy, Benign, Oral Potentially Malignant Disorders (OPMD), OSCC) by an in-house expert pathologist. These patient-level weak labels form a new extension to the dataset. We evaluate a baseline multiple-instance learning (MIL) model and a proposed Region-Affinity Attention MIL (RAA-MIL) that models spatial relationships between regions within each slide. The RAA-MIL achieves an average accuracy of 72.7%, weighted F1-score of 0.69 on an unseen test set, outperforming the baseline. This study establishes the first patient-level weakly supervised benchmark for oral cytology and moves toward reliable AI-assisted digital pathology.

#ai
#research
#product

Score: 2.80

Engagement proxy: 0

Canonical link: https://arxiv.org/abs/2511.12269