Fresh from the feed
Filter by timeframe and category to zero in on the moves that matter.
arXiv:2511.11991v1 Announce Type: new Abstract: Time series forecasting is crucial for applications in various domains. Conventional methods often rely on global decomposition into trend, seasonal, and residual components, which become ineffective for real-world series dominated by local, complex, and highly dynamic patterns. Moreover, the high model complexity of such approaches limits their applicability in real-time or resource-constrained environments. In this work, we propose a novel \textbf{RE}liability-aware \textbf{C}odebook-\textbf{AS}sisted \textbf{T}ime series forecasting framework (\textbf{ReCast}) that enables lightweight and robust prediction by exploiting recurring local shapes. ReCast encodes local patterns into discrete embeddings through patch-wise quantization using a learnable codebook, thereby compactly capturing stable regular structures. To compensate for residual variations not preserved by quantization, ReCast employs a dual-path architecture comprising a quantization path for efficient modeling of regular structures and a residual path for reconstructing irregular fluctuations. A central contribution of ReCast is a reliability-aware codebook update strategy, which incrementally refines the codebook via weighted corrections. These correction weights are derived by fusing multiple reliability factors from complementary perspectives by a distributionally robust optimization (DRO) scheme, ensuring adaptability to non-stationarity and robustness to distribution shifts. Extensive experiments demonstrate that ReCast outperforms state-of-the-art (SOTA) models in accuracy, efficiency, and adaptability to distribution shifts.
arXiv:2511.12033v1 Announce Type: new Abstract: Recent advances in large language models (LLMs) have demonstrated significant potential in hardware design automation, particularly in using natural language to synthesize Register-Transfer Level (RTL) code. Despite this progress, a gap remains between model capability and the demands of real-world RTL design, including syntax errors, functional hallucinations, and weak alignment to designer intent. Reinforcement Learning with Verifiable Rewards (RLVR) offers a promising approach to bridge this gap, as hardware provides executable and formally checkable signals that can be used to further align model outputs with design intent. However, in long, structured RTL code sequences, not all tokens contribute equally to functional correctness, and na\"ively spreading gradients across all tokens dilutes learning signals. A key insight from our entropy analysis in RTL generation is that only a small fraction of tokens (e.g., always, if, assign, posedge) exhibit high uncertainty and largely influence control flow and module structure. To address these challenges, we present EARL, an Entropy-Aware Reinforcement Learning framework for Verilog generation. EARL performs policy optimization using verifiable reward signals and introduces entropy-guided selective updates that gate policy gradients to high-entropy tokens. This approach preserves training stability and concentrates gradient updates on functionally important regions of code. Our experiments on VerilogEval and RTLLM show that EARL improves functional pass rates over prior LLM baselines by up to 14.7%, while reducing unnecessary updates and improving training stability. These results indicate that focusing RL on critical, high-uncertainty tokens enables more reliable and targeted policy improvement for structured RTL code generation.
arXiv:2511.12041v1 Announce Type: new Abstract: Super-resolution flow reconstruction using state-of-the-art data-driven techniques is valuable for a variety of applications, such as subgrid/subfilter closure modeling, accelerating spatiotemporal forecasting, data compression, and serving as an upscaling tool for sparse experimental measurements. In the present work, a first-of-its-kind multiscale graph transformer approach is developed for mesh-based super-resolution (SR-GT) of reacting flows. The novel data-driven modeling paradigm leverages a graph-based flow-field representation compatible with complex geometries and non-uniform/unstructured grids. Further, the transformer backbone captures long-range dependencies between different parts of the low-resolution flow-field, identifies important features, and then generates the super-resolved flow-field that preserves those features at a higher resolution. The performance of SR-GT is demonstrated in the context of spectral-element-discretized meshes for a challenging test problem of 2D detonation propagation within a premixed hydrogen-air mixture exhibiting highly complex multiscale reacting flow behavior. The SR-GT framework utilizes a unique element-local (+ neighborhood) graph representation for the coarse input, which is then tokenized before being processed by the transformer component to produce the fine output. It is demonstrated that SR-GT provides high super-resolution accuracy for reacting flow-field features and superior performance compared to traditional interpolation-based SR schemes.
arXiv:2511.12071v1 Announce Type: new Abstract: The rise of graph-structured data has driven major advances in Graph Machine Learning (GML), where graph embeddings (GEs) map features from Knowledge Graphs (KGs) into vector spaces, enabling tasks like node classification and link prediction. However, since GEs are derived from explicit topology and features, they may miss crucial implicit knowledge hidden in seemingly sparse datasets, affecting graph structure and their representation. We propose a GML pipeline that integrates a Knowledge Completion (KC) phase to uncover latent dataset semantics before embedding generation. Focusing on transitive relations, we model hidden connections with decay-based inference functions, reshaping graph topology, with consequences on embedding dynamics and aggregation processes in GraphSAGE and Node2Vec. Experiments show that our GML pipeline significantly alters the embedding space geometry, demonstrating that its introduction is not just a simple enrichment but a transformative step that redefines graph representation quality.
arXiv:2511.12075v1 Announce Type: new Abstract: Adaptive treatment strategies (ATS) are sequential decision-making processes that enable personalized care by dynamically adjusting treatment decisions in response to evolving patient symptoms. While reinforcement learning (RL) offers a promising approach for optimizing ATS, its conventional online trial-and-error learning mechanism is not permissible in clinical settings due to risks of harm to patients. Offline RL tackles this limitation by learning policies exclusively from historical treatment data, but its performance is often constrained by data scarcity-a pervasive challenge in clinical domains. To overcome this, we propose Treatment Stitching (TreatStitch), a novel data augmentation framework that generates clinically valid treatment trajectories by intelligently stitching segments from existing treatment data. Specifically, TreatStitch identifies similar intermediate patient states across different trajectories and stitches their respective segments. Even when intermediate states are too dissimilar to stitch directly, TreatStitch leverages the Schr\"odinger bridge method to generate smooth and energy-efficient bridging trajectories that connect dissimilar states. By augmenting these synthetic trajectories into the original dataset, offline RL can learn from a more diverse dataset, thereby improving its ability to optimize ATS. Extensive experiments across multiple treatment datasets demonstrate the effectiveness of TreatStitch in enhancing offline RL performance. Furthermore, we provide a theoretical justification showing that TreatStitch maintains clinical validity by avoiding out-of-distribution transitions.
SenseRay-3D: Generalizable and Physics-Informed Framework for End-to-End Indoor Propagation Modeling
arXiv:2511.12092v1 Announce Type: new Abstract: Modeling indoor radio propagation is crucial for wireless network planning and optimization. However, existing approaches often rely on labor-intensive manual modeling of geometry and material properties, resulting in limited scalability and efficiency. To overcome these challenges, this paper presents SenseRay-3D, a generalizable and physics-informed end-to-end framework that predicts three-dimensional (3D) path-loss heatmaps directly from RGB-D scans, thereby eliminating the need for explicit geometry reconstruction or material annotation. The proposed framework builds a sensing-driven voxelized scene representation that jointly encodes occupancy, electromagnetic material characteristics, and transmitter-receiver geometry, which is processed by a SwinUNETR-based neural network to infer environmental path-loss relative to free-space path-loss. A comprehensive synthetic indoor propagation dataset is further developed to validate the framework and to serve as a standardized benchmark for future research. Experimental results show that SenseRay-3D achieves a mean absolute error of 4.27 dB on unseen environments and supports real-time inference at 217 ms per sample, demonstrating its scalability, efficiency, and physical consistency. SenseRay-3D paves a new path for sense-driven, generalizable, and physics-consistent modeling of indoor propagation, marking a major leap beyond our pioneering EM DeepRay framework.
arXiv:2511.12121v1 Announce Type: new Abstract: Multimodal learning often relies on aligning representations across modalities to enable effective information integration, an approach traditionally assumed to be universally beneficial. However, prior research has primarily taken an observational approach, examining naturally occurring alignment in multimodal data and exploring its correlation with model performance, without systematically studying the direct effects of explicitly enforced alignment between representations of different modalities. In this work, we investigate how explicit alignment influences both model performance and representation alignment under different modality-specific information structures. Specifically, we introduce a controllable contrastive learning module that enables precise manipulation of alignment strength during training, allowing us to explore when explicit alignment improves or hinders performance. Our results on synthetic and real datasets under different data characteristics show that the impact of explicit alignment on the performance of unimodal models is related to the characteristics of the data: the optimal level of alignment depends on the amount of redundancy between the different modalities. We identify an optimal alignment strength that balances modality-specific signals and shared redundancy in the mixed information distributions. This work provides practical guidance on when and how explicit alignment should be applied to achieve optimal unimodal encoder performance.
arXiv:2511.12122v1 Announce Type: new Abstract: This study addresses the problem of dynamic anomaly detection in accounting transactions and proposes a real-time detection method based on a Transformer to tackle the challenges of hidden abnormal behaviors and high timeliness requirements in complex trading environments. The approach first models accounting transaction data by representing multi-dimensional records as time-series matrices and uses embedding layers and positional encoding to achieve low-dimensional mapping of inputs. A sequence modeling structure with multi-head self-attention is then constructed to capture global dependencies and aggregate features from multiple perspectives, thereby enhancing the ability to detect abnormal patterns. The network further integrates feed-forward layers and regularization strategies to achieve deep feature representation and accurate anomaly probability estimation. To validate the effectiveness of the method, extensive experiments were conducted on a public dataset, including comparative analysis, hyperparameter sensitivity tests, environmental sensitivity tests, and data sensitivity tests. Results show that the proposed method outperforms baseline models in AUC, F1-Score, Precision, and Recall, and maintains stable performance under different environmental conditions and data perturbations. These findings confirm the applicability and advantages of the Transformer-based framework for dynamic anomaly detection in accounting transactions and provide methodological support for intelligent financial risk control and auditing.
arXiv:2511.12123v1 Announce Type: new Abstract: In cooperative Multi-Agent Reinforcement Learning (MARL), efficient exploration is crucial for optimizing the performance of joint policy. However, existing methods often update joint policies via independent agent exploration, without coordination among agents, which inherently constrains the expressive capacity and exploration of joint policies. To address this issue, we propose a conductor-based joint policy framework that directly enhances the expressive capacity of joint policies and coordinates exploration. In addition, we develop a Hierarchical Conductor-based Policy Optimization (HCPO) algorithm that instructs policy updates for the conductor and agents in a direction aligned with performance improvement. A rigorous theoretical guarantee further establishes the monotonicity of the joint policy optimization process. By deploying local conductors, HCPO retains centralized training benefits while eliminating inter-agent communication during execution. Finally, we evaluate HCPO on three challenging benchmarks: StarCraftII Multi-agent Challenge, Multi-agent MuJoCo, and Multi-agent Particle Environment. The results indicate that HCPO outperforms competitive MARL baselines regarding cooperative efficiency and stability.
arXiv:2511.12132v1 Announce Type: new Abstract: Graph neural networks (GNNs) have emerged as the mainstream paradigm for graph representation learning due to their effective message aggregation. However, this advantage also amplifies biases inherent in graph topology, raising fairness concerns. Existing fairness-aware GNNs provide satisfactory performance on fairness metrics such as Statistical Parity and Equal Opportunity while maintaining acceptable accuracy trade-offs. Unfortunately, we observe that this pursuit of fairness metrics neglects the GNN's ability to predict negative labels, which renders their predictions with extremely high False Positive Rates (FPR), resulting in negative effects in high-risk scenarios. To this end, we advocate that classification performance should be carefully calibrated while improving fairness, rather than simply constraining accuracy loss. Furthermore, we propose Fair GNN via Structural Entropy (\textbf{FairGSE}), a novel framework that maximizes two-dimensional structural entropy (2D-SE) to improve fairness without neglecting false positives. Experiments on several real-world datasets show FairGSE reduces FPR by 39\% vs. state-of-the-art fairness-aware GNNs, with comparable fairness improvement.
arXiv:2511.12139v1 Announce Type: new Abstract: Non-intrusive load monitoring (NILM) is an advanced load monitoring technique that uses data-driven algorithms to disaggregate the total power consumption of a household into the consumption of individual appliances. However, real-world NILM deployment still faces major challenges, including overfitting, low model generalization, and disaggregating a large number of appliances operating at the same time. To address these challenges, this work proposes an end-to-end framework for the NILM classification task, which consists of high-frequency labeled data, a feature extraction method, and a lightweight neural network. Within this framework, we introduce a novel feature extraction method that fuses Independent Component Analysis (ICA) and Principal Component Analysis (PCA) features. Moreover, we propose a lightweight architecture for multi-label NILM classification (Fusion-ResNet). The proposed feature-based model achieves a higher $F1$ score on average and across different appliances compared to state-of-the-art NILM classifiers while minimizing the training and inference time. Finally, we assessed the performance of our model against baselines with a varying number of simultaneously active devices. Results demonstrate that Fusion-ResNet is relatively robust to stress conditions with up to 15 concurrently active appliances.
arXiv:2511.12155v1 Announce Type: new Abstract: Large language models exhibit systematic vulnerabilities to adversarial attacks despite extensive safety alignment. We provide a mechanistic analysis revealing that position-dependent gradient weakening during autoregressive training creates signal decay, leading to incomplete safety learning where safety training fails to transform model preferences in later response regions fully. We introduce base-favored tokens -- vocabulary elements where base models assign higher probability than aligned models -- as computational indicators of incomplete safety learning and develop a targeted completion method that addresses undertrained regions through adaptive penalties and hybrid teacher distillation. Experimental evaluation across Llama and Qwen model families demonstrates dramatic improvements in adversarial robustness, with 48--98% reductions in attack success rates while preserving general capabilities. These results establish both a mechanistic understanding and practical solutions for fundamental limitations in safety alignment methodologies.
arXiv:2511.12158v1 Announce Type: new Abstract: Many bioacoustics, neuroscience, and linguistics research utilize birdsongs as proxy models to acquire knowledge in diverse areas. Developing models generally requires precisely annotated data at the level of syllables. Hence, automated and data-efficient methods that reduce annotation costs are in demand. This work presents a lightweight, yet performant neural network architecture for birdsong annotation called Residual-MLP-RNN. Then, it presents a robust three-stage training pipeline for developing reliable deep birdsong syllable detectors with minimal expert labor. The first stage is self-supervised learning from unlabeled data. Two of the most successful pretraining paradigms are explored, namely, masked prediction and online clustering. The second stage is supervised training with effective data augmentations to create a robust model for frame-level syllable detection. The third stage is semi-supervised post-training, which leverages the unlabeled data again. However, unlike the initial phase, this time it is aligned with the downstream task. The performance of this data-efficient approach is demonstrated for the complex song of the Canary in extreme label-scarcity scenarios. Canary has one of the most difficult songs to annotate, which implicitly validates the method for other birds. Finally, the potential of self-supervised embeddings is assessed for linear probing and unsupervised birdsong analysis.
arXiv:2511.12171v1 Announce Type: new Abstract: This manuscript addresses the challenge of designing functionally graded materials (FGMs) for arbitrary-shaped domains. Towards this goal, the present work proposes a generic volume fraction profile generation algorithm based on Gaussian Process Regression (GPR). The proposed algorithm can handle complex-shaped domains and generate smooth FGM profiles while adhering to the specified volume fraction values at boundaries/part of boundaries. The resulting design space from GPR comprises diverse profiles, enhancing the potential for discovering optimal configurations. Further, the algorithm allows the user to control the smoothness of the underlying profiles and the size of the design space through a length scale parameter. Further, the proposed profile generation scheme is coupled with the genetic algorithm to find the optimum FGM profiles for a given application. To make the genetic algorithm consistent with the GPR profile generation scheme, the standard simulated binary crossover operator in the genetic algorithm has been modified with a projection operator. We present numerous thermoelastic optimization examples to demonstrate the efficacy of the proposed profile generation algorithm and optimization framework.
arXiv:2511.12174v1 Announce Type: new Abstract: Diffusion models have shown great promise in data generation, yet generating time series data remains challenging due to the need to capture complex temporal dependencies and structural patterns. In this paper, we present \textit{TSGDiff}, a novel framework that rethinks time series generation from a graph-based perspective. Specifically, we represent time series as dynamic graphs, where edges are constructed based on Fourier spectrum characteristics and temporal dependencies. A graph neural network-based encoder-decoder architecture is employed to construct a latent space, enabling the diffusion process to model the structural representation distribution of time series effectively. Furthermore, we propose the Topological Structure Fidelity (Topo-FID) score, a graph-aware metric for assessing the structural similarity of time series graph representations. Topo-FID integrates two sub-metrics: Graph Edit Similarity, which quantifies differences in adjacency matrices, and Structural Entropy Similarity, which evaluates the entropy of node degree distributions. This comprehensive metric provides a more accurate assessment of structural fidelity in generated time series. Experiments on real-world datasets demonstrate that \textit{TSGDiff} generates high-quality synthetic time series data generation, faithfully preserving temporal dependencies and structural integrity, thereby advancing the field of synthetic time series generation.
arXiv:2511.12846v1 Announce Type: new Abstract: Online change detection (OCD) aims to rapidly identify change points in streaming data and is critical in applications such as power system monitoring, wireless network sensing, and financial anomaly detection. Existing OCD methods typically assume precise system knowledge, which is unrealistic due to estimation errors and environmental variations. Moreover, existing OCD methods often struggle with efficiency in large-scale systems. To overcome these challenges, we propose RoS-Guard, a robust and optimal OCD algorithm tailored for linear systems with uncertainty. Through a tight relaxation and reformulation of the OCD optimization problem, RoS-Guard employs neural unrolling to enable efficient parallel computation via GPU acceleration. The algorithm provides theoretical guarantees on performance, including expected false alarm rate and worst-case average detection delay. Extensive experiments validate the effectiveness of RoS-Guard and demonstrate significant computational speedup in large-scale system scenarios.
arXiv:2511.12188v1 Announce Type: new Abstract: The recent success of large language models (LLMs) has sparked a growing interest in training large-scale models. As the model size continues to scale, concerns are growing about the depletion of high-quality, well-curated training data. This has led practitioners to explore training approaches like Federated Learning (FL), which can leverage the abundant data on edge devices while maintaining privacy. However, the decentralization of training datasets in FL introduces challenges to scaling large models, a topic that remains under-explored. This paper fills this gap and provides qualitative insights on generalizing the previous model scaling experience to federated learning scenarios. Specifically, we derive a PAC-Bayes (Probably Approximately Correct Bayesian) upper bound for the generalization error of models trained with stochastic algorithms in federated settings and quantify the impact of distributed training data on the optimal model size by finding the analytic solution of model size that minimizes this bound. Our theoretical results demonstrate that the optimal model size has a negative power law relationship with the number of clients if the total training compute is unchanged. Besides, we also find that switching to FL with the same training compute will inevitably reduce the upper bound of generalization performance that the model can achieve through training, and that estimating the optimal model size in federated scenarios should depend on the average training compute across clients. Furthermore, we also empirically validate the correctness of our results with extensive training runs on different models, network settings, and datasets.
arXiv:2511.12191v1 Announce Type: new Abstract: Many machine learning tasks aim to find models that work well not for a single, but for a group of criteria, often opposing ones. One such example is imbalanced data classification, where, on the one hand, we want to achieve the best possible classification quality for data from the minority class without degrading the classification quality of the majority class. One solution is to propose an aggregate learning criterion and reduce the multi-objective learning task to a single-criteria optimization problem. Unfortunately, such an approach is characterized by ambiguity of interpretation since the value of the aggregated criterion does not indicate the value of the component criteria. Hence, there are more and more proposals for algorithms based on multi-objective optimization (MOO), which can simultaneously optimize multiple criteria. However, such an approach results in a set of multiple non-dominated solutions (Pareto front). The selection of a single solution from the Pareto front is a challenge itself, and much attention is paid to the issue of how to select it considering user preferences, as well as how to compare solutions returned by different MOO algorithms among themselves. Thus, a significant gap has been identified in the classifier evaluation methodology, i.e., how to reliably compare methods returning single solutions with algorithms returning solutions in the form of Pareto fronts. To fill the aforementioned gap, this article proposes a new, reliable way of evaluating algorithms based on multi-objective algorithms with methods that return single solutions while pointing out solutions from a Pareto front tailored to the user's preferences. This work focuses only on algorithm comparison, not their learning. The algorithms selected for this study are illustrative to help understand the proposed approach.
arXiv:2511.12199v1 Announce Type: new Abstract: The surrogate gradient (SG) method has shown significant promise in enhancing the performance of deep spiking neural networks (SNNs), but it also introduces vulnerabilities to adversarial attacks. Although spike coding strategies and neural dynamics parameters have been extensively studied for their impact on robustness, the critical role of gradient magnitude, which reflects the model's sensitivity to input perturbations, remains underexplored. In SNNs, the gradient magnitude is primarily determined by the interaction between the membrane potential distribution (MPD) and the SG function. In this study, we investigate the relationship between the MPD and SG and its implications for improving the robustness of SNNs. Our theoretical analysis reveals that reducing the proportion of membrane potential lying within the gradient-available range of the SG function effectively mitigates the sensitivity of SNNs to input perturbations. Building upon this insight, we propose a novel MPD-driven surrogate gradient regularization (MPD-SGR) method, which enhances robustness by explicitly regularizing the MPD based on its interaction with the SG function. Extensive experiments across multiple image classification benchmarks and diverse network architectures confirm that the MPD-SGR method significantly enhances the resilience of SNNs to adversarial perturbations and exhibits strong generalizability across diverse network configurations, SG function variants, and spike encoding schemes.
arXiv:2511.12217v1 Announce Type: new Abstract: Large Language Models (LLMs) are vulnerable to adversarial attacks that bypass safety guidelines and generate harmful content. Mitigating these vulnerabilities requires defense mechanisms that are both robust and computationally efficient. However, existing approaches either incur high computational costs or rely on lightweight defenses that can be easily circumvented, rendering them impractical for real-world LLM-based systems. In this work, we introduce the AlignTree defense, which enhances model alignment while maintaining minimal computational overhead. AlignTree monitors LLM activations during generation and detects misaligned behavior using an efficient random forest classifier. This classifier operates on two signals: (i) the refusal direction -- a linear representation that activates on misaligned prompts, and (ii) an SVM-based signal that captures non-linear features associated with harmful content. Unlike previous methods, AlignTree does not require additional prompts or auxiliary guard models. Through extensive experiments, we demonstrate the efficiency and robustness of AlignTree across multiple LLMs and benchmarks.