Data-Efficient Self-Supervised Algorithms for Fine-Grained Birdsong Analysis
arXiv:2511.12158v1 Announce Type: new Abstract: Many bioacoustics, neuroscience, and linguistics research utilize birdsongs as proxy models to acquire knowledge in diverse areas. Developing models generally requires precisely annotated data at the level of syllables. Hence, automated and data-efficient methods that reduce annotation costs are in demand. This work presents a lightweight, yet performant neural network architecture for birdsong annotation called Residual-MLP-RNN. Then, it presents a robust three-stage training pipeline for developing reliable deep birdsong syllable detectors with minimal expert labor. The first stage is self-supervised learning from unlabeled data. Two of the most successful pretraining paradigms are explored, namely, masked prediction and online clustering. The second stage is supervised training with effective data augmentations to create a robust model for frame-level syllable detection. The third stage is semi-supervised post-training, which leverages the unlabeled data again. However, unlike the initial phase, this time it is aligned with the downstream task. The performance of this data-efficient approach is demonstrated for the complex song of the Canary in extreme label-scarcity scenarios. Canary has one of the most difficult songs to annotate, which implicitly validates the method for other birds. Finally, the potential of self-supervised embeddings is assessed for linear probing and unsupervised birdsong analysis.
Score: 2.80
Engagement proxy: 0
Canonical link: https://arxiv.org/abs/2511.12158