Latest

Fresh from the feed

Filter by timeframe and category to zero in on the moves that matter.

On the Probabilistic Learnability of Compact Neural Network Preimage Bounds
paper
arXiv cs.LG3 days ago

arXiv:2511.11656v1 Announce Type: new Abstract: Although recent provable methods have been developed to compute preimage bounds for neural networks, their scalability is fundamentally limited by the #P-hardness of the problem. In this work, we adopt a novel probabilistic perspective, aiming to deliver solutions with high-confidence guarantees and bounded error. To this end, we investigate the potential of bootstrap-based and randomized approaches that are capable of capturing complex patterns in high-dimensional spaces, including input regions where a given output property holds. In detail, we introduce $\textbf{R}$andom $\textbf{F}$orest $\textbf{Pro}$perty $\textbf{Ve}$rifier ($\texttt{RF-ProVe}$), a method that exploits an ensemble of randomized decision trees to generate candidate input regions satisfying a desired output property and refines them through active resampling. Our theoretical derivations offer formal statistical guarantees on region purity and global coverage, providing a practical, scalable solution for computing compact preimage approximations in cases where exact solvers fail to scale.

#ai
Score · 2.80
SpecQuant: Spectral Decomposition and Adaptive Truncation for Ultra-Low-Bit LLMs Quantization
paper
arXiv cs.LG3 days ago

arXiv:2511.11663v1 Announce Type: new Abstract: The emergence of accurate open large language models (LLMs) has sparked a push for advanced quantization techniques to enable efficient deployment on end-user devices. In this paper, we revisit the challenge of extreme LLM compression -- targeting ultra-low-bit quantization for both activations and weights -- from a Fourier frequency domain perspective. We propose SpecQuant, a two-stage framework that tackles activation outliers and cross-channel variance. In the first stage, activation outliers are smoothed and transferred into the weight matrix to simplify downstream quantization. In the second stage, we apply channel-wise low-frequency Fourier truncation to suppress high-frequency components while preserving essential signal energy, improving quantization robustness. Our method builds on the principle that most of the weight energy is concentrated in low-frequency components, which can be retained with minimal impact on model accuracy. To enable runtime adaptability, we introduce a lightweight truncation module during inference that adjusts truncation thresholds based on channel characteristics. On LLaMA-3 8B, SpecQuant achieves 4-bit quantization for both weights and activations, narrowing the zero-shot accuracy gap to only 1.5% compared to full precision, while delivering 2 times faster inference and 3times lower memory usage.

#ai
#llm
#research
Score · 2.80
Clifford Algebraic Rotor Embeddings : Maybe embeddings should start to CARE
paper
arXiv cs.LG3 days ago

arXiv:2511.11665v1 Announce Type: new Abstract: Rotary Positional Embeddings (RoPE) have demonstrated exceptional performance as a positional encoding method, consistently outperforming their baselines. While recent work has sought to extend RoPE to higher-dimensional inputs, many such extensions are non-commutative, thereby forfeiting RoPE's shift-equivariance property. Spherical RoPE is one such non-commutative variant, motivated by the idea of rotating embedding vectors on spheres rather than circles. However, spherical rotations are inherently non-commutative, making the choice of rotation sequence ambiguous. In this work, we explore a quaternion-based approach -- Quaternion Rotary Embeddings (QuatRo) -- in place of Euler angles, leveraging quaternions' ability to represent 3D rotations to parameterize the axes of rotation. We show Mixed RoPE and Spherical RoPE to be special cases of QuatRo. Further, we propose a generalization of QuatRo to Clifford Algebraic Rotary Embeddings (CARE) using geometric algebra. Viewing quaternions as the even subalgebra of Cl(3,0,0), we extend the notion of rotary embeddings from quaternions to Clifford rotors acting on multivectors. This formulation enables two key generalizations: (1) extending rotary embeddings to arbitrary dimensions, and (2) encoding positional information in multivectors of multiple grades, not just vectors. We present preliminary experiments comparing spherical, quaternion, and Clifford-based rotary embeddings.

#ai
Score · 2.80
Beyond Superficial Forgetting: Thorough Unlearning through Knowledge Density Estimation and Block Re-insertion
paper
arXiv cs.LG3 days ago

arXiv:2511.11667v1 Announce Type: new Abstract: Machine unlearning, which selectively removes harmful knowledge from a pre-trained model without retraining from scratch, is crucial for addressing privacy, regulatory compliance, and ethical concerns in Large Language Models (LLMs). However, existing unlearning methods often struggle to thoroughly remove harmful knowledge, leaving residual harmful knowledge that can be easily recovered. To address these limitations, we propose Knowledge Density-Guided Unlearning via Blocks Reinsertion (KUnBR), a novel approach that first identifies layers with rich harmful knowledge and then thoroughly eliminates the harmful knowledge via re-insertion strategy. Our method introduces knowledge density estimation to quantify and locate layers containing the most harmful knowledge, enabling precise unlearning. Additionally, we design a layer re-insertion strategy that extracts and re-inserts harmful knowledge-rich layers into the original LLM, bypassing gradient obstruction caused by cover layers and ensuring effective gradient propagation during unlearning. Extensive experiments conducted on several unlearning and general capability benchmarks demonstrate that KUnBR achieves state-of-the-art forgetting performance while maintaining model utility.

#ai
#llm
Score · 2.80
Do traveling waves make good positional encodings?
paper
arXiv cs.LG3 days ago

arXiv:2511.11668v1 Announce Type: new Abstract: Transformers rely on positional encoding to compensate for the inherent permutation invariance of self-attention. Traditional approaches use absolute sinusoidal embeddings or learned positional vectors, while more recent methods emphasize relative encodings to better capture translation equivariances. In this work, we propose RollPE, a novel positional encoding mechanism based on traveling waves, implemented by applying a circular roll operation to the query and key tensors in self-attention. This operation induces a relative shift in phase across positions, allowing the model to compute attention as a function of positional differences rather than absolute indices. We show this simple method significantly outperforms traditional absolute positional embeddings and is comparable to RoPE. We derive a continuous case of RollPE which implicitly imposes a topographic structure on the query and key space. We further derive a mathematical equivalence of RollPE to a particular configuration of RoPE. Viewing RollPE through the lens of traveling waves may allow us to simplify RoPE and relate it to processes of information flow in the brain.

#ai
Score · 2.80
Evaluation of LLM-based Explanations for a Learning Analytics Dashboard
paper
arXiv cs.LG3 days ago

arXiv:2511.11671v1 Announce Type: new Abstract: Learning Analytics Dashboards can be a powerful tool to support self-regulated learning in Digital Learning Environments and promote development of meta-cognitive skills, such as reflection. However, their effectiveness can be affected by the interpretability of the data they provide. To assist in the interpretation, we employ a large language model to generate verbal explanations of the data in the dashboard and evaluate it against a standalone dashboard and explanations provided by human teachers in an expert study with university level educators (N=12). We find that the LLM-based explanations of the skill state presented in the dashboard, as well as general recommendations on how to proceed with learning within the course are significantly more favored compared to the other conditions. This indicates that using LLMs for interpretation purposes can enhance the learning experience for learners while maintaining the pedagogical standards approved by teachers.

#ai
#llm
#research
Score · 2.80
Synergistic Feature Fusion for Latent Lyrical Classification: A Gated Deep Learning Architecture
paper
arXiv cs.LG3 days ago

arXiv:2511.11673v1 Announce Type: new Abstract: This study addresses the challenge of integrating complex, high-dimensional deep semantic features with simple, interpretable structural cues for lyrical content classification. We introduce a novel Synergistic Fusion Layer (SFL) architecture, a deep learning model utilizing a gated mechanism to modulate Sentence-BERT embeddings (Fdeep) using low-dimensional auxiliary features (Fstruct). The task, derived from clustering UMAP-reduced lyrical embeddings, is reframed as binary classification, distinguishing a dominant, homogeneous cluster (Class 0) from all other content (Class 1). The SFL model achieved an accuracy of 0.9894 and a Macro F1 score of 0.9894, outperforming a comprehensive Random Forest (RF) baseline that used feature concatenation (Accuracy = 0.9868). Crucially, the SFL model demonstrated vastly superior reliability and calibration, exhibiting a 93% reduction in Expected Calibration Error (ECE = 0.0035) and a 2.5x lower Log Loss (0.0304) compared to the RF baseline (ECE = 0.0500; Log Loss = 0.0772). This performance validates the architectural hypothesis that non-linear gating is superior to simple feature concatenation, establishing the SFL model as a robust and trustworthy system for complex multimodal lyrical analysis.

#research
Score · 2.80
Homotopy-Guided Self-Supervised Learning of Parametric Solutions for AC Optimal Power Flow
paper
arXiv cs.LG3 days ago

arXiv:2511.11677v1 Announce Type: new Abstract: Learning to optimize (L2O) parametric approximations of AC optimal power flow (AC-OPF) solutions offers the potential for fast, reusable decision-making in real-time power system operations. However, the inherent nonconvexity of AC-OPF results in challenging optimization landscapes, and standard learning approaches often fail to converge to feasible, high-quality solutions. This work introduces a \textit{homotopy-guided self-supervised L2O method} for parametric AC-OPF problems. The key idea is to construct a continuous deformation of the objective and constraints during training, beginning from a relaxed problem with a broad basin of attraction and gradually transforming it toward the original problem. The resulting learning process improves convergence stability and promotes feasibility without requiring labeled optimal solutions or external solvers. We evaluate the proposed method on standard IEEE AC-OPF benchmarks and show that homotopy-guided L2O significantly increases feasibility rates compared to non-homotopy baselines, while achieving objective values comparable to full OPF solvers. These findings demonstrate the promise of homotopy-based heuristics for scalable, constraint-aware L2O in power system optimization.

#ai
Score · 2.80
A Bayesian Model for Multi-stage Censoring
paper
arXiv cs.LG3 days ago

arXiv:2511.11684v1 Announce Type: new Abstract: Many sequential decision settings in healthcare feature funnel structures characterized by a series of stages, such as screenings or evaluations, where the number of patients who advance to each stage progressively decreases and decisions become increasingly costly. For example, an oncologist may first conduct a breast exam, followed by a mammogram for patients with concerning exams, followed by a biopsy for patients with concerning mammograms. A key challenge is that the ground truth outcome, such as the biopsy result, is only revealed at the end of this funnel. The selective censoring of the ground truth can introduce statistical biases in risk estimation, especially in underserved patient groups, whose outcomes are more frequently censored. We develop a Bayesian model for funnel decision structures, drawing from prior work on selective labels and censoring. We first show in synthetic settings that our model is able to recover the true parameters and predict outcomes for censored patients more accurately than baselines. We then apply our model to a dataset of emergency department visits, where in-hospital mortality is observed only for those who are admitted to either the hospital or ICU. We find that there are gender-based differences in hospital and ICU admissions. In particular, our model estimates that the mortality risk threshold to admit women to the ICU is higher for women (5.1%) than for men (4.5%).

Score · 2.80
R-Tuning: Wavelet-Decomposed Replay and Semantic Alignment for Continual Adaptation of Pretrained Time-Series Models
paper
arXiv cs.LG3 days ago

arXiv:2511.11685v1 Announce Type: new Abstract: Pre-trained models have demonstrated exceptional generalization capabilities in time-series forecasting; however, adapting them to evolving data distributions remains a significant challenge. A key hurdle lies in accessing the original training data, as fine-tuning solely on new data often leads to catastrophic forgetting. To address this issue, we propose Replay Tuning (R-Tuning), a novel framework designed for the continual adaptation of pre-trained time-series models. R-Tuning constructs a unified latent space that captures both prior and current task knowledge through a frequency-aware replay strategy. Specifically, it augments model-generated samples via wavelet-based decomposition across multiple frequency bands, generating trend-preserving and fusion-enhanced variants to improve representation diversity and replay efficiency. To further reduce reliance on synthetic samples, R-Tuning introduces a latent consistency constraint that aligns new representations with the prior task space. This constraint guides joint optimization within a compact and semantically coherent latent space, ensuring robust knowledge retention and adaptation. Extensive experimental results demonstrate the superiority of R-Tuning, which reduces MAE and MSE by up to 46.9% and 46.8%, respectively, on new tasks, while preserving prior knowledge with gains of up to 5.7% and 6.0% on old tasks. Notably, under few-shot settings, R-Tuning outperforms all state-of-the-art baselines even when synthetic proxy samples account for only 5% of the new task dataset.

#ai
Score · 2.80
Regularized Schr\"odinger: Alleviating Distortion and Exposure Bias in Solving Inverse Problems
paper
arXiv cs.LG3 days ago

arXiv:2511.11686v1 Announce Type: new Abstract: Diffusion models serve as a powerful generative framework for solving inverse problems. However, they still face two key challenges: 1) the distortion-perception tradeoff, where improving perceptual quality often degrades reconstruction fidelity, and 2) the exposure bias problem, where the training-inference input mismatch leads to prediction error accumulation and reduced reconstruction quality. In this work, we propose the Regularized Schr\"odinger Bridge (RSB), an adaptation of Schr\"odinger Bridge tailored for inverse problems that addresses the above limitations. RSB employs a novel regularized training strategy that perturbs both the input states and targets, effectively mitigating exposure bias by exposing the model to simulated prediction errors and also alleviating distortion by well-designed interpolation via the posterior mean. Extensive experiments on two typical inverse problems for speech enhancement demonstrate that RSB outperforms state-of-the-art methods, significantly improving distortion metrics and effectively reducing exposure bias.

#ai
Score · 2.80
Beyond saliency: enhancing explanation of speech emotion recognition with expert-referenced acoustic cues
paper
arXiv cs.LG3 days ago

arXiv:2511.11691v1 Announce Type: new Abstract: Explainable AI (XAI) for Speech Emotion Recognition (SER) is critical for building transparent, trustworthy models. Current saliency-based methods, adapted from vision, highlight spectrogram regions but fail to show whether these regions correspond to meaningful acoustic markers of emotion, limiting faithfulness and interpretability. We propose a framework that overcomes these limitations by quantifying the magnitudes of cues within salient regions. This clarifies "what" is highlighted and connects it to "why" it matters, linking saliency to expert-referenced acoustic cues of speech emotions. Experiments on benchmark SER datasets show that our approach improves explanation quality by explicitly linking salient regions to theory-driven speech emotions expert-referenced acoustics. Compared to standard saliency methods, it provides more understandable and plausible explanations of SER models, offering a foundational step towards trustworthy speech-based affective computing.

#ai
Score · 2.80
Benchmarking GNNs for OOD Materials Property Prediction with Uncertainty Quantification
paper
arXiv cs.LG3 days ago

arXiv:2511.11697v1 Announce Type: new Abstract: We present MatUQ, a benchmark framework for evaluating graph neural networks (GNNs) on out-of-distribution (OOD) materials property prediction with uncertainty quantification (UQ). MatUQ comprises 1,375 OOD prediction tasks constructed from six materials datasets using five OFM-based and a newly proposed structure-aware splitting strategy, SOAP-LOCO, which captures local atomic environments more effectively. We evaluate 12 representative GNN models under a unified uncertainty-aware training protocol that combines Monte Carlo Dropout and Deep Evidential Regression (DER), and introduce a novel uncertainty metric, D-EviU, which shows the strongest correlation with prediction errors in most tasks. Our experiments yield two key findings. First, the uncertainty-aware training approach significantly improves model prediction accuracy, reducing errors by an average of 70.6\% across challenging OOD scenarios. Second, the benchmark reveals that no single model dominates universally: earlier models such as SchNet and ALIGNN remain competitive, while newer models like CrystalFramer and SODNet demonstrate superior performance on specific material properties. These results provide practical insights for selecting reliable models under distribution shifts in materials discovery.

#ai
Score · 2.80
Moirai 2.0: When Less Is More for Time Series Forecasting
paper
arXiv cs.LG3 days ago

arXiv:2511.11698v1 Announce Type: new Abstract: We introduce Moirai 2.0, a decoder-only time-series foundation model trained on a new corpus of 36M series. The model adopts quantile forecasting and multi-token prediction, improving both probabilistic accuracy and inference efficiency. On the Gift-Eval benchmark, it ranks among the top pretrained models while achieving a strong trade-off between accuracy, speed, and model size. Compared to Moirai 1.0, Moirai 2.0 replaces masked-encoder training, multi-patch inputs, and mixture-distribution outputs with a simpler decoder-only architecture, single patch, and quantile loss. Ablation studies isolate these changes -- showing that the decoder-only backbone along with recursive multi-quantile decoding contribute most to the gains. Additional experiments show that Moirai 2.0 outperforms larger models from the same family and exhibits robust domain-level results. In terms of efficiency and model size, Moirai 2.0 is twice as fast and thirty times smaller than its prior best version, Moirai 1.0-Large, while also performing better. Model performance plateaus with increasing parameter count and declines at longer horizons, motivating future work on data scaling and long-horizon modeling. We release code and evaluation details to support further research.

#ai
#research
#product
Score · 2.80
Tighter Truncated Rectangular Prism Approximation for RNN Robustness Verification
paper
arXiv cs.LG3 days ago

arXiv:2511.11699v1 Announce Type: new Abstract: Robustness verification is a promising technique for rigorously proving Recurrent Neural Networks (RNNs) robustly. A key challenge is to over-approximate the nonlinear activation functions with linear constraints, which can transform the verification problem into an efficiently solvable linear programming problem. Existing methods over-approximate the nonlinear parts with linear bounding planes individually, which may cause significant over-estimation and lead to lower verification accuracy. In this paper, in order to tightly enclose the three-dimensional nonlinear surface generated by the Hadamard product, we propose a novel truncated rectangular prism formed by two linear relaxation planes and a refinement-driven method to minimize both its volume and surface area for tighter over-approximation. Based on this approximation, we implement a prototype DeepPrism for RNN robustness verification. The experimental results demonstrate that \emph{DeepPrism} has significant improvement compared with the state-of-the-art approaches in various tasks of image classification, speech recognition and sentiment analysis.

#ai
#research
#product
Score · 2.80
Bayesian Neural Networks with Monte Carlo Dropout for Probabilistic Electricity Price Forecasting
paper
arXiv cs.LG3 days ago

arXiv:2511.11701v1 Announce Type: new Abstract: Accurate electricity price forecasting is critical for strategic decision-making in deregulated electricity markets, where volatility stems from complex supply-demand dynamics and external factors. Traditional point forecasts often fail to capture inherent uncertainties, limiting their utility for risk management. This work presents a framework for probabilistic electricity price forecasting using Bayesian neural networks (BNNs) with Monte Carlo (MC) dropout, training separate models for each hour of the day to capture diurnal patterns. A critical assessment and comparison with the benchmark model, namely: generalized autoregressive conditional heteroskedasticity with exogenous variable (GARCHX) model and the LASSO estimated auto-regressive model (LEAR), highlights that the proposed model outperforms the benchmark models in terms of point prediction and intervals. This work serves as a reference for leveraging probabilistic neural models in energy market predictions.

#ai
Score · 2.80
Enhancing Reinforcement Learning in 3D Environments through Semantic Segmentation: A Case Study in ViZDoom
paper
arXiv cs.LG3 days ago

arXiv:2511.11703v1 Announce Type: new Abstract: Reinforcement learning (RL) in 3D environments with high-dimensional sensory input poses two major challenges: (1) the high memory consumption induced by memory buffers required to stabilise learning, and (2) the complexity of learning in partially observable Markov Decision Processes (POMDPs). This project addresses these challenges by proposing two novel input representations: SS-only and RGB+SS, both employing semantic segmentation on RGB colour images. Experiments were conducted in deathmatches of ViZDoom, utilizing perfect segmentation results for controlled evaluation. Our results showed that SS-only was able to reduce the memory consumption of memory buffers by at least 66.6%, and up to 98.6% when a vectorisable lossless compression technique with minimal overhead such as run-length encoding is applied. Meanwhile, RGB+SS significantly enhances RL agents' performance with the additional semantic information provided. Furthermore, we explored density-based heatmapping as a tool to visualise RL agents' movement patterns and evaluate their suitability for data collection. A brief comparison with a previous approach highlights how our method overcame common pitfalls in applying semantic segmentation in 3D environments like ViZDoom.

#research
Score · 2.80
FSC-Net: Fast-Slow Consolidation Networks for Continual Learning
paper
arXiv cs.LG3 days ago

arXiv:2511.11707v1 Announce Type: new Abstract: Continual learning remains challenging due to catastrophic forgetting, where neural networks lose previously acquired knowledge when learning new tasks. Inspired by memory consolidation in neuroscience, we propose FSC-Net (Fast-Slow Consolidation Networks), a dual-network architecture that separates rapid task learning from gradual knowledge consolidation. Our method employs a fast network (NN1) for immediate adaptation to new tasks and a slow network (NN2) that consolidates knowledge through distillation and replay. Within the family of MLP-based NN1 variants we evaluated, consolidation effectiveness is driven more by methodology than architectural embellishments -- a simple MLP outperforms more complex similarity-gated variants by 1.2pp. Through systematic hyperparameter analysis, we observed empirically that pure replay without distillation during consolidation achieves superior performance, consistent with the hypothesis that distillation from the fast network introduces recency bias. On Split-MNIST (30 seeds), FSC-Net achieves 91.71% +/- 0.62% retention accuracy, a +4.27pp gain over the fast network alone (87.43% +/- 1.27%, paired t=23.585, p < 1e-10). On Split-CIFAR-10 (5 seeds), our method achieves 33.31% +/- 0.38% retention with an +8.20pp gain over the fast network alone (25.11% +/- 1.61%, paired t=9.75, p < 1e-3), demonstrating +8.20pp gain, though absolute performance (33.31%) remains modest and below random expectation, highlighting need for stronger backbones. Our results provide empirical evidence that the dual-timescale consolidation mechanism, rather than architectural complexity, is central to mitigating catastrophic forgetting in this setting.

#ai
Score · 2.80
Which Sparse Autoencoder Features Are Real? Model-X Knockoffs for False Discovery Rate Control
paper
arXiv cs.LG3 days ago

arXiv:2511.11711v1 Announce Type: new Abstract: Although sparse autoencoders (SAEs) are crucial for identifying interpretable features in neural networks, it is still challenging to distinguish between real computational patterns and erroneous correlations. We introduce Model-X knockoffs to SAE feature selection, using knock-off+ to control the false discovery rate (FDR) with finite-sample guarantees under the standard Model-X assumptions (in our case, via a Gaussian surrogate for the latent distribution). We select 129 features at a target FDR q=0.1 after analyzing 512 high-activity SAE latents for sentiment classification using Pythia-70M. About 25% of the latents under examination carry task-relevant signal, whereas 75% do not, according to the chosen set, which displays a 5.40x separation in knockoff statistics compared to non-selected features. Our method offers a re-producible and principled framework for reliable feature discovery by combining SAEs with multiple-testing-aware inference, advancing the foundations of mechanistic interpretability.

Score · 2.80
Federated Learning for Pediatric Pneumonia Detection: Enabling Collaborative Diagnosis Without Sharing Patient Data
paper
arXiv cs.LG3 days ago

arXiv:2511.11714v1 Announce Type: new Abstract: Early and accurate pneumonia detection from chest X-rays (CXRs) is clinically critical to expedite treatment and isolation, reduce complications, and curb unnecessary antibiotic use. Although artificial intelligence (AI) substantially improves CXR-based detection, development is hindered by globally distributed data, high inter-hospital variability, and strict privacy regulations (e.g., HIPAA, GDPR) that make centralization impractical. These constraints are compounded by heterogeneous imaging protocols, uneven data availability, and the costs of transferring large medical images across geographically dispersed sites. In this paper, we evaluate Federated Learning (FL) using the Sherpa.ai FL platform, enabling multiple hospitals (nodes) to collaboratively train a CXR classifier for pneumonia while keeping data in place and private. Using the Pediatric Pneumonia Chest X-ray dataset, we simulate cross-hospital collaboration with non-independent and non-identically distributed (non-IID) data, reproducing real-world variability across institutions and jurisdictions. Our experiments demonstrate that collaborative and privacy-preserving training across multiple hospitals via FL led to a dramatic performance improvement achieving 0.900 Accuracy and 0.966 ROC-AUC, corresponding to 47.5% and 50.0% gains over single-hospital models (0.610; 0.644), without transferring any patient CXR. These results indicate that FL delivers high-performing, generalizable, secure and private pneumonia detection across healthcare networks, with data kept local. This is especially relevant for rare diseases, where FL enables secure multi-institutional collaboration without data movement, representing a breakthrough for accelerating diagnosis and treatment development in low-data domains.

#ai
#research
Score · 2.80
Page 25 of 93