paper
arXiv cs.LG
November 18th, 2025 at 5:00 AM

Synergistic Feature Fusion for Latent Lyrical Classification: A Gated Deep Learning Architecture

arXiv:2511.11673v1 Announce Type: new Abstract: This study addresses the challenge of integrating complex, high-dimensional deep semantic features with simple, interpretable structural cues for lyrical content classification. We introduce a novel Synergistic Fusion Layer (SFL) architecture, a deep learning model utilizing a gated mechanism to modulate Sentence-BERT embeddings (Fdeep) using low-dimensional auxiliary features (Fstruct). The task, derived from clustering UMAP-reduced lyrical embeddings, is reframed as binary classification, distinguishing a dominant, homogeneous cluster (Class 0) from all other content (Class 1). The SFL model achieved an accuracy of 0.9894 and a Macro F1 score of 0.9894, outperforming a comprehensive Random Forest (RF) baseline that used feature concatenation (Accuracy = 0.9868). Crucially, the SFL model demonstrated vastly superior reliability and calibration, exhibiting a 93% reduction in Expected Calibration Error (ECE = 0.0035) and a 2.5x lower Log Loss (0.0304) compared to the RF baseline (ECE = 0.0500; Log Loss = 0.0772). This performance validates the architectural hypothesis that non-linear gating is superior to simple feature concatenation, establishing the SFL model as a robust and trustworthy system for complex multimodal lyrical analysis.

#research

Score: 2.80

Engagement proxy: 0

Canonical link: https://arxiv.org/abs/2511.11673