Latest

Fresh from the feed

Filter by timeframe and category to zero in on the moves that matter.

OmniSparse: Training-Aware Fine-Grained Sparse Attention for Long-Video MLLMs
paper
arXiv cs.CV3 days ago

arXiv:2511.12201v1 Announce Type: new Abstract: Existing sparse attention methods primarily target inference-time acceleration by selecting critical tokens under predefined sparsity patterns. However, they often fail to bridge the training-inference gap and lack the capacity for fine-grained token selection across multiple dimensions such as queries, key-values (KV), and heads, leading to suboptimal performance and limited acceleration gains. In this paper, we introduce OmniSparse, a training-aware fine-grained sparse attention framework for long-video MLLMs, which operates in both training and inference with dynamic token budget allocation. Specifically, OmniSparse contains three adaptive and complementary mechanisms: (1) query selection via lazy-active classification, retaining active queries that capture broad semantic similarity while discarding most lazy ones that focus on limited local context and exhibit high functional redundancy; (2) KV selection with head-level dynamic budget allocation, where a shared budget is determined based on the flattest head and applied uniformly across all heads to ensure attention recall; and (3) KV cache slimming to reduce head-level redundancy by selectively fetching visual KV cache according to the head-level decoding query pattern. Experimental results show that OmniSparse matches the performance of full attention while achieving up to 2.7x speedup during prefill and 2.4x memory reduction during decoding.

#ai
#llm
#research
Score · 2.80
FaNe: Towards Fine-Grained Cross-Modal Contrast with False-Negative Reduction and Text-Conditioned Sparse Attention
paper
arXiv cs.CV3 days ago

arXiv:2511.12215v1 Announce Type: new Abstract: Medical vision-language pre-training (VLP) offers significant potential for advancing medical image understanding by leveraging paired image-report data. However, existing methods are limited by Fa}lse Negatives (FaNe) induced by semantically similar texts and insufficient fine-grained cross-modal alignment. To address these limitations, we propose FaNe, a semantic-enhanced VLP framework. To mitigate false negatives, we introduce a semantic-aware positive pair mining strategy based on text-text similarity with adaptive normalization. Furthermore, we design a text-conditioned sparse attention pooling module to enable fine-grained image-text alignment through localized visual representations guided by textual cues. To strengthen intra-modal discrimination, we develop a hard-negative aware contrastive loss that adaptively reweights semantically similar negatives. Extensive experiments on five downstream medical imaging benchmarks demonstrate that FaNe achieves state-of-the-art performance across image classification, object detection, and semantic segmentation, validating the effectiveness of our framework.

#ai
#open_source
Score · 2.80
CrossVid: A Comprehensive Benchmark for Evaluating Cross-Video Reasoning in Multimodal Large Language Models
paper
arXiv cs.CV3 days ago

arXiv:2511.12263v1 Announce Type: new Abstract: Cross-Video Reasoning (CVR) presents a significant challenge in video understanding, which requires simultaneous understanding of multiple videos to aggregate and compare information across groups of videos. Most existing video understanding benchmarks focus on single-video analysis, failing to assess the ability of multimodal large language models (MLLMs) to simultaneously reason over various videos. Recent benchmarks evaluate MLLMs' capabilities on multi-view videos that capture different perspectives of the same scene. However, their limited tasks hinder a thorough assessment of MLLMs in diverse real-world CVR scenarios. To this end, we introduce CrossVid, the first benchmark designed to comprehensively evaluate MLLMs' spatial-temporal reasoning ability in cross-video contexts. Firstly, CrossVid encompasses a wide spectrum of hierarchical tasks, comprising four high-level dimensions and ten specific tasks, thereby closely reflecting the complex and varied nature of real-world video understanding. Secondly, CrossVid provides 5,331 videos, along with 9,015 challenging question-answering pairs, spanning single-choice, multiple-choice, and open-ended question formats. Through extensive experiments on various open-source and closed-source MLLMs, we observe that Gemini-2.5-Pro performs best on CrossVid, achieving an average accuracy of 50.4%. Notably, our in-depth case study demonstrates that most current MLLMs struggle with CVR tasks, primarily due to their inability to integrate or compare evidence distributed across multiple videos for reasoning. These insights highlight the potential of CrossVid to guide future advancements in enhancing MLLMs' CVR capabilities.

#ai
#llm
#research
Score · 2.80
Rethinking Bias in Generative Data Augmentation for Medical AI: a Frequency Recalibration Method
paper
arXiv cs.CV3 days ago

arXiv:2511.12301v1 Announce Type: new Abstract: Developing Medical AI relies on large datasets and easily suffers from data scarcity. Generative data augmentation (GDA) using AI generative models offers a solution to synthesize realistic medical images. However, the bias in GDA is often underestimated in medical domains, with concerns about the risk of introducing detrimental features generated by AI and harming downstream tasks. This paper identifies the frequency misalignment between real and synthesized images as one of the key factors underlying unreliable GDA and proposes the Frequency Recalibration (FreRec) method to reduce the frequency distributional discrepancy and thus improve GDA. FreRec involves (1) Statistical High-frequency Replacement (SHR) to roughly align high-frequency components and (2) Reconstructive High-frequency Mapping (RHM) to enhance image quality and reconstruct high-frequency details. Extensive experiments were conducted in various medical datasets, including brain MRIs, chest X-rays, and fundus images. The results show that FreRec significantly improves downstream medical image classification performance compared to uncalibrated AI-synthesized samples. FreRec is a standalone post-processing step that is compatible with any generative model and can integrate seamlessly with common medical GDA pipelines.

#ai
#research
Score · 2.80
Ground Plane Projection for Improved Traffic Analytics at Intersections
paper
arXiv cs.CV3 days ago

arXiv:2511.12342v1 Announce Type: new Abstract: Accurate turning movement counts at intersections are important for signal control, traffic management and urban planning. Computer vision systems for automatic turning movement counts typically rely on visual analysis in the image plane of an infrastructure camera. Here we explore potential advantages of back-projecting vehicles detected in one or more infrastructure cameras to the ground plane for analysis in real-world 3D coordinates. For single-camera systems we find that back-projection yields more accurate trajectory classification and turning movement counts. We further show that even higher accuracy can be achieved through weak fusion of back-projected detections from multiple cameras. These results suggeest that traffic should be analyzed on the ground plane, not the image plane

Score · 2.80
Explainable AI-Generated Image Detection RewardBench
paper
arXiv cs.CV3 days ago

arXiv:2511.12363v1 Announce Type: new Abstract: Conventional, classification-based AI-generated image detection methods cannot explain why an image is considered real or AI-generated in a way a human expert would, which reduces the trustworthiness and persuasiveness of these detection tools for real-world applications. Leveraging Multimodal Large Language Models (MLLMs) has recently become a trending solution to this issue. Further, to evaluate the quality of generated explanations, a common approach is to adopt an "MLLM as a judge" methodology to evaluate explanations generated by other MLLMs. However, how well those MLLMs perform when judging explanations for AI-generated image detection generated by themselves or other MLLMs has not been well studied. We therefore propose \textbf{XAIGID-RewardBench}, the first benchmark designed to evaluate the ability of current MLLMs to judge the quality of explanations about whether an image is real or AI-generated. The benchmark consists of approximately 3,000 annotated triplets sourced from various image generation models and MLLMs as policy models (detectors) to assess the capabilities of current MLLMs as reward models (judges). Our results show that the current best reward model scored 88.76\% on this benchmark (while human inter-annotator agreement reaches 98.30\%), demonstrating that a visible gap remains between the reasoning abilities of today's MLLMs and human-level performance. In addition, we provide an analysis of common pitfalls that these models frequently encounter. Code and benchmark are available at https://github.com/RewardBench/XAIGID-RewardBench.

#ai
#llm
#open_source
Score · 2.80
Fast Reasoning Segmentation for Images and Videos
paper
arXiv cs.CV3 days ago

arXiv:2511.12368v1 Announce Type: new Abstract: Reasoning segmentation enables open-set object segmentation via implicit text queries, therefore serving as a foundation for embodied agents that should operate autonomously in real-world environments. However, existing methods for reasoning segmentation require multimodal large language models with billions of parameters that exceed the computational capabilities of edge devices that typically deploy the embodied AI systems. Distillation offers a pathway to compress these models while preserving their capabilities. Yet, existing distillation approaches fail to transfer the multi-step reasoning capabilities that reasoning segmentation demands, as they focus on matching output predictions and intermediate features rather than preserving reasoning chains. The emerging paradigm of reasoning over digital twin representations presents an opportunity for more effective distillation by re-framing the problem. Consequently, we propose FastReasonSeg, which employs digital twin representations that decouple perception from reasoning to enable more effective distillation. Our distillation scheme first relies on supervised fine-tuning on teacher-generated reasoning chains. Then it is followed by reinforcement fine-tuning with joint rewards evaluating both segmentation accuracy and reasoning quality alignment. Experiments on two video (JiTBench, RVTBench) and two image benchmarks (ReasonSeg, LLM-Seg40K) demonstrate that our FastReasonSeg achieves state-of-the-art reasoning segmentation performance. Moreover, the distilled 0.6B variant outperforms models with 20 times more parameters while achieving 7.79 FPS throughput with only 2.1GB memory consumption. This efficiency enables deployment in resource-constrained environments to enable real-time reasoning segmentation.

#ai
#llm
Score · 2.80
Changes in Real Time: Online Scene Change Detection with Multi-View Fusion
paper
arXiv cs.CV3 days ago

arXiv:2511.12370v1 Announce Type: new Abstract: Online Scene Change Detection (SCD) is an extremely challenging problem that requires an agent to detect relevant changes on the fly while observing the scene from unconstrained viewpoints. Existing online SCD methods are significantly less accurate than offline approaches. We present the first online SCD approach that is pose-agnostic, label-free, and ensures multi-view consistency, while operating at over 10 FPS and achieving new state-of-the-art performance, surpassing even the best offline approaches. Our method introduces a new self-supervised fusion loss to infer scene changes from multiple cues and observations, PnP-based fast pose estimation against the reference scene, and a fast change-guided update strategy for the 3D Gaussian Splatting scene representation. Extensive experiments on complex real-world datasets demonstrate that our approach outperforms both online and offline baselines.

#ai
Score · 2.80
Calibrated Decomposition of Aleatoric and Epistemic Uncertainty in Deep Features for Inference-Time Adaptation
paper
arXiv cs.CV3 days ago

arXiv:2511.12389v1 Announce Type: new Abstract: Most estimators collapse all uncertainty modes into a single confidence score, preventing reliable reasoning about when to allocate more compute or adjust inference. We introduce Uncertainty-Guided Inference-Time Selection, a lightweight inference time framework that disentangles aleatoric (data-driven) and epistemic (model-driven) uncertainty directly in deep feature space. Aleatoric uncertainty is estimated using a regularized global density model, while epistemic uncertainty is formed from three complementary components that capture local support deficiency, manifold spectral collapse, and cross-layer feature inconsistency. These components are empirically orthogonal and require no sampling, no ensembling, and no additional forward passes. We integrate the decomposed uncertainty into a distribution free conformal calibration procedure that yields significantly tighter prediction intervals at matched coverage. Using these components for uncertainty guided adaptive model selection reduces compute by approximately 60 percent on MOT17 with negligible accuracy loss, enabling practical self regulating visual inference. Additionally, our ablation results show that the proposed orthogonal uncertainty decomposition consistently yields higher computational savings across all MOT17 sequences, improving margins by 13.6 percentage points over the total-uncertainty baseline.

#ai
Score · 2.80
Towards Rotation-only Imaging Geometry: Rotation Estimation
paper
arXiv cs.CV3 days ago

arXiv:2511.12415v1 Announce Type: new Abstract: Structure from Motion (SfM) is a critical task in computer vision, aiming to recover the 3D scene structure and camera motion from a sequence of 2D images. The recent pose-only imaging geometry decouples 3D coordinates from camera poses and demonstrates significantly better SfM performance through pose adjustment. Continuing the pose-only perspective, this paper explores the critical relationship between the scene structures, rotation and translation. Notably, the translation can be expressed in terms of rotation, allowing us to condense the imaging geometry representation onto the rotation manifold. A rotation-only optimization framework based on reprojection error is proposed for both two-view and multi-view scenarios. The experiment results demonstrate superior accuracy and robustness performance over the current state-of-the-art rotation estimation methods, even comparable to multiple bundle adjustment iteration results. Hopefully, this work contributes to even more accurate, efficient and reliable 3D visual computing.

#ai
#research
Score · 2.80
Text-Guided Channel Perturbation and Pretrained Knowledge Integration for Unified Multi-Modality Image Fusion
paper
arXiv cs.CV3 days ago

arXiv:2511.12432v1 Announce Type: new Abstract: Multi-modality image fusion enhances scene perception by combining complementary information. Unified models aim to share parameters across modalities for multi-modality image fusion, but large modality differences often cause gradient conflicts, limiting performance. Some methods introduce modality-specific encoders to enhance feature perception and improve fusion quality. However, this strategy reduces generalisation across different fusion tasks. To overcome this limitation, we propose a unified multi-modality image fusion framework based on channel perturbation and pre-trained knowledge integration (UP-Fusion). To suppress redundant modal information and emphasize key features, we propose the Semantic-Aware Channel Pruning Module (SCPM), which leverages the semantic perception capability of a pre-trained model to filter and enhance multi-modality feature channels. Furthermore, we proposed the Geometric Affine Modulation Module (GAM), which uses original modal features to apply affine transformations on initial fusion features to maintain the feature encoder modal discriminability. Finally, we apply a Text-Guided Channel Perturbation Module (TCPM) during decoding to reshape the channel distribution, reducing the dependence on modality-specific channels. Extensive experiments demonstrate that the proposed algorithm outperforms existing methods on both multi-modality image fusion and downstream tasks.

#ai
Score · 2.80
Real-Time Drivers' Drowsiness Detection and Analysis through Deep Learning
paper
arXiv cs.CV3 days ago

arXiv:2511.12438v1 Announce Type: new Abstract: A long road trip is fun for drivers. However, a long drive for days can be tedious for a driver to accommodate stringent deadlines to reach distant destinations. Such a scenario forces drivers to drive extra miles, utilizing extra hours daily without sufficient rest and breaks. Once a driver undergoes such a scenario, it occasionally triggers drowsiness during driving. Drowsiness in driving can be life-threatening to any individual and can affect other drivers' safety; therefore, a real-time detection system is needed. To identify fatigued facial characteristics in drivers and trigger the alarm immediately, this research develops a real-time driver drowsiness detection system utilizing deep convolutional neural networks (DCNNs) and OpenCV.Our proposed and implemented model takes real- time facial images of a driver using a live camera and utilizes a Python-based library named OpenCV to examine the facial images for facial landmarks like sufficient eye openings and yawn-like mouth movements. The DCNNs framework then gathers the data and utilizes a per-trained model to detect the drowsiness of a driver using facial landmarks. If the driver is identified as drowsy, the system issues a continuous alert in real time, embedded in the Smart Car technology.By potentially saving innocent lives on the roadways, the proposed technique offers a non-invasive, inexpensive, and cost-effective way to identify drowsiness. Our proposed and implemented DCNNs embedded drowsiness detection model successfully react with NTHU-DDD dataset and Yawn-Eye-Dataset with drowsiness detection classification accuracy of 99.6% and 97% respectively.

#ai
#research
Score · 2.80
MaskAnyNet: Rethinking Masked Image Regions as Valuable Information in Supervised Learning
paper
arXiv cs.CV3 days ago

arXiv:2511.12480v1 Announce Type: new Abstract: In supervised learning, traditional image masking faces two key issues: (i) discarded pixels are underutilized, leading to a loss of valuable contextual information; (ii) masking may remove small or critical features, especially in fine-grained tasks. In contrast, masked image modeling (MIM) has demonstrated that masked regions can be reconstructed from partial input, revealing that even incomplete data can exhibit strong contextual consistency with the original image. This highlights the potential of masked regions as sources of semantic diversity. Motivated by this, we revisit the image masking approach, proposing to treat masked content as auxiliary knowledge rather than ignored. Based on this, we propose MaskAnyNet, which combines masking with a relearning mechanism to exploit both visible and masked information. It can be easily extended to any model with an additional branch to jointly learn from the recomposed masked region. This approach leverages the semantic diversity of the masked regions to enrich features and preserve fine-grained details. Experiments on CNN and Transformer backbones show consistent gains across multiple benchmarks. Further analysis confirms that the proposed method improves semantic diversity through the reuse of masked content.

#ai
Score · 2.80
DINO-Detect: A Simple yet Effective Framework for Blur-Robust AI-Generated Image Detection
paper
arXiv cs.CV3 days ago

arXiv:2511.12511v1 Announce Type: new Abstract: With growing concerns over image authenticity and digital safety, the field of AI-generated image (AIGI) detection has progressed rapidly. Yet, most AIGI detectors still struggle under real-world degradations, particularly motion blur, which frequently occurs in handheld photography, fast motion, and compressed video. Such blur distorts fine textures and suppresses high-frequency artifacts, causing severe performance drops in real-world settings. We address this limitation with a blur-robust AIGI detection framework based on teacher-student knowledge distillation. A high-capacity teacher (DINOv3), trained on clean (i.e., sharp) images, provides stable and semantically rich representations that serve as a reference for learning. By freezing the teacher to maintain its generalization ability, we distill its feature and logit responses from sharp images to a student trained on blurred counterparts, enabling the student to produce consistent representations under motion degradation. Extensive experiments benchmarks show that our method achieves state-of-the-art performance under both motion-blurred and clean conditions, demonstrating improved generalization and real-world applicability. Source codes will be released at: https://github.com/JiaLiangShen/Dino-Detect-for-blur-robust-AIGC-Detection.

#ai
#product
#open_source
Score · 2.80
ReaSon: Reinforced Causal Search with Information Bottleneck for Video Understanding
paper
arXiv cs.CV3 days ago

arXiv:2511.12530v1 Announce Type: new Abstract: Keyframe selection has become essential for video understanding with vision-language models (VLMs) due to limited input tokens and the temporal sparsity of relevant information across video frames. Video understanding often relies on effective keyframes that are not only informative but also causally decisive. To this end, we propose Reinforced Causal Search with Information Bottleneck (ReaSon), a framework that formulates keyframe selection as an optimization problem with the help of a novel Causal Information Bottleneck (CIB), which explicitly defines keyframes as those satisfying both predictive sufficiency and causal necessity. Specifically, ReaSon employs a learnable policy network to select keyframes from a visually relevant pool of candidate frames to capture predictive sufficiency, and then assesses causal necessity via counterfactual interventions. Finally, a composite reward aligned with the CIB principle is designed to guide the selection policy through reinforcement learning. Extensive experiments on NExT-QA, EgoSchema, and Video-MME demonstrate that ReaSon consistently outperforms existing state-of-the-art methods under limited-frame settings, validating its effectiveness and generalization ability.

Score · 2.80
EmoVerse: A MLLMs-Driven Emotion Representation Dataset for Interpretable Visual Emotion Analysis
paper
arXiv cs.CV3 days ago

arXiv:2511.12554v1 Announce Type: new Abstract: Visual Emotion Analysis (VEA) aims to bridge the affective gap between visual content and human emotional responses. Despite its promise, progress in this field remains limited by the lack of open-source and interpretable datasets. Most existing studies assign a single discrete emotion label to an entire image, offering limited insight into how visual elements contribute to emotion. In this work, we introduce EmoVerse, a large-scale open-source dataset that enables interpretable visual emotion analysis through multi-layered, knowledge-graph-inspired annotations. By decomposing emotions into Background-Attribute-Subject (B-A-S) triplets and grounding each element to visual regions, EmoVerse provides word-level and subject-level emotional reasoning. With over 219k images, the dataset further includes dual annotations in Categorical Emotion States (CES) and Dimensional Emotion Space (DES), facilitating unified discrete and continuous emotion representation. A novel multi-stage pipeline ensures high annotation reliability with minimal human effort. Finally, we introduce an interpretable model that maps visual cues into DES representations and provides detailed attribution explanations. Together, the dataset, pipeline, and model form a comprehensive foundation for advancing explainable high-level emotion understanding.

#ai
#llm
Score · 2.80
Through-Foliage Surface-Temperature Reconstruction for early Wildfire Detection
paper
arXiv cs.CV3 days ago

arXiv:2511.12572v1 Announce Type: new Abstract: We introduce a novel method for reconstructing surface temperatures through occluding forest vegetation by combining signal processing and machine learning. Our goal is to enable fully automated aerial wildfire monitoring using autonomous drones, allowing for the early detection of ground fires before smoke or flames are visible. While synthetic aperture (SA) sensing mitigates occlusion from the canopy and sunlight, it introduces thermal blur that obscures the actual surface temperatures. To address this, we train a visual state space model to recover the subtle thermal signals of partially occluded soil and fire hotspots from this blurred data. A key challenge was the scarcity of real-world training data. We overcome this by integrating a latent diffusion model into a vector quantized to generated a large volume of realistic surface temperature simulations from real wildfire recordings, which we further expanded through temperature augmentation and procedural thermal forest simulation. On simulated data across varied ambient and surface temperatures, forest densities, and sunlight conditions, our method reduced the RMSE by a factor of 2 to 2.5 compared to conventional thermal and uncorrected SA imaging. In field experiments focused on high-temperature hotspots, the improvement was even more significant, with a 12.8-fold RMSE gain over conventional thermal and a 2.6-fold gain over uncorrected SA images. We also demonstrate our model's generalization to other thermal signals, such as human signatures for search and rescue. Since simple thresholding is frequently inadequate for detecting subtle thermal signals, the morphological characteristics are equally essential for accurate classification. Our experiments demonstrated another clear advantage: we reconstructed the complete morphology of fire and human signatures, whereas conventional imaging is defeated by partial occlusion.

#ai
Score · 2.80
Seg-VAR: Image Segmentation with Visual Autoregressive Modeling
paper
arXiv cs.CV3 days ago

arXiv:2511.12594v1 Announce Type: new Abstract: While visual autoregressive modeling (VAR) strategies have shed light on image generation with the autoregressive models, their potential for segmentation, a task that requires precise low-level spatial perception, remains unexplored. Inspired by the multi-scale modeling of classic Mask2Former-based models, we propose Seg-VAR, a novel framework that rethinks segmentation as a conditional autoregressive mask generation problem. This is achieved by replacing the discriminative learning with the latent learning process. Specifically, our method incorporates three core components: (1) an image encoder generating latent priors from input images, (2) a spatial-aware seglat (a latent expression of segmentation mask) encoder that maps segmentation masks into discrete latent tokens using a location-sensitive color mapping to distinguish instances, and (3) a decoder reconstructing masks from these latents. A multi-stage training strategy is introduced: first learning seglat representations via image-seglat joint training, then refining latent transformations, and finally aligning image-encoder-derived latents with seglat distributions. Experiments show Seg-VAR outperforms previous discriminative and generative methods on various segmentation tasks and validation benchmarks. By framing segmentation as a sequential hierarchical prediction task, Seg-VAR opens new avenues for integrating autoregressive reasoning into spatial-aware vision systems. Code will be available at https://github.com/rkzheng99/Seg-VAR.

#ai
#open_source
Score · 2.80
OPFormer: Object Pose Estimation leveraging foundation model with geometric encoding
paper
arXiv cs.CV3 days ago

arXiv:2511.12614v1 Announce Type: new Abstract: We introduce a unified, end-to-end framework that seamlessly integrates object detection and pose estimation with a versatile onboarding process. Our pipeline begins with an onboarding stage that generates object representations from either traditional 3D CAD models or, in their absence, by rapidly reconstructing a high-fidelity neural representation (NeRF) from multi-view images. Given a test image, our system first employs the CNOS detector to localize target objects. For each detection, our novel pose estimation module, OPFormer, infers the precise 6D pose. The core of OPFormer is a transformer-based architecture that leverages a foundation model for robust feature extraction. It uniquely learns a comprehensive object representation by jointly encoding multiple template views and enriches these features with explicit 3D geometric priors using Normalized Object Coordinate Space (NOCS). A decoder then establishes robust 2D-3D correspondences to determine the final pose. Evaluated on the challenging BOP benchmarks, our integrated system demonstrates a strong balance between accuracy and efficiency, showcasing its practical applicability in both model-based and model-free scenarios.

Score · 2.80
C3Net: Context-Contrast Network for Camouflaged Object Detection
paper
arXiv cs.CV3 days ago

arXiv:2511.12627v1 Announce Type: new Abstract: Camouflaged object detection identifies objects that blend seamlessly with their surroundings through similar colors, textures, and patterns. This task challenges both traditional segmentation methods and modern foundation models, which fail dramatically on camouflaged objects. We identify six fundamental challenges in COD: Intrinsic Similarity, Edge Disruption, Extreme Scale Variation, Environmental Complexities, Contextual Dependencies, and Salient-Camouflaged Object Disambiguation. These challenges frequently co-occur and compound the difficulty of detection, requiring comprehensive architectural solutions. We propose C3Net, which addresses all challenges through a specialized dual-pathway decoder architecture. The Edge Refinement Pathway employs gradient-initialized Edge Enhancement Modules to recover precise boundaries from early features. The Contextual Localization Pathway utilizes our novel Image-based Context Guidance mechanism to achieve intrinsic saliency suppression without external models. An Attentive Fusion Module synergistically combines the two pathways via spatial gating. C3Net achieves state-of-the-art performance with S-measures of 0.898 on COD10K, 0.904 on CAMO, and 0.913 on NC4K, while maintaining efficient processing. C3Net demonstrates that complex, multifaceted detection challenges require architectural innovation, with specialized components working synergistically to achieve comprehensive coverage beyond isolated improvements. Code, model weights, and results are available at https://github.com/Baber-Jan/C3Net.

#ai
#open_source
Score · 2.80
Page 84 of 92