Fresh from the feed
Filter by timeframe and category to zero in on the moves that matter.
arXiv:2408.14398v4 Announce Type: replace Abstract: Recent advances in large language model (LLM) pruning have shown state-of-the-art (SotA) compression results in post-training and retraining-free settings while maintaining high predictive performance. However, previous research mainly considered calibrating based on English text, despite the multilingual nature of modern LLMs and their frequent use in non-English languages. This analysis paper conducts an in-depth investigation of the performance and internal representation changes associated with pruning multilingual language models for monolingual applications. We present the first comprehensive empirical study, comparing different calibration languages for pruning multilingual models across diverse languages, tasks, models, and SotA pruning techniques. We further analyze the latent subspaces, pruning masks, and individual neurons within pruned models. Our results reveal that while calibration on the target language effectively retains perplexity and yields high signal-to-noise ratios, it does not consistently improve downstream task performance. Further analysis of internal representations at three different levels highlights broader limitations of current pruning approaches: While they effectively preserve dominant information like language-specific features, this is insufficient to counteract the loss of nuanced, language-agnostic features that are crucial for knowledge retention and reasoning.
arXiv:2411.00034v2 Announce Type: replace Abstract: Companies support their customers using live chats and chatbots to gain their loyalty. AFAS is a Dutch company aiming to leverage the opportunity large language models (LLMs) offer to answer customer queries with minimal to no input from its customer support team. Adding to its complexity, it is unclear what makes a response correct, and that too in Dutch. Further, with minimal data available for training, the challenge is to identify whether an answer generated by a large language model is correct and do it on the fly. This study is the first to define the correctness of a response based on how the support team at AFAS makes decisions. It leverages literature on natural language generation and automated answer grading systems to automate the decision-making of the customer support team. We investigated questions requiring a binary response (e.g., Would it be possible to adjust tax rates manually?) or instructions (e.g., How would I adjust tax rate manually?) to test how close our automated approach reaches support rating. Our approach can identify wrong messages in 55\% of the cases. This work demonstrates the potential for automatically assessing when our chatbot may provide incorrect or misleading answers. Specifically, we contribute (1) a definition and metrics for assessing correctness, and (2) suggestions to improve correctness with respect to regional language and question type.
arXiv:2411.14499v3 Announce Type: replace Abstract: The concept of world models has garnered significant attention due to advancements in multimodal large language models such as GPT-4 and video generation models such as Sora, which are central to the pursuit of artificial general intelligence. This survey offers a comprehensive review of the literature on world models. Generally, world models are regarded as tools for either understanding the present state of the world or predicting its future dynamics. This review presents a systematic categorization of world models, emphasizing two primary functions: (1) constructing internal representations to understand the mechanisms of the world, and (2) predicting future states to simulate and guide decision-making. Initially, we examine the current progress in these two categories. We then explore the application of world models in key domains, including generative games, autonomous driving, robotics, and social simulacra, with a focus on how each domain utilizes these aspects. Finally, we outline key challenges and provide insights into potential future research directions. We summarize the representative papers along with their code repositories in https://github.com/tsinghua-fib-lab/World-Model.
arXiv:2503.04789v3 Announce Type: replace Abstract: Retrieval-augmented generation (RAG) enhances LLMs with external knowledge, yet generation remains vulnerable to retrieval-induced noise and uncertain placement of relevant chunks, often causing hallucinations. We present Ext2Gen, an extract-then-generate framework that strengthens LLMs via joint evidence selection and answer generation, dynamically identifying query-relevant content while suppressing noise, thereby removing the need for any independent pre-generation compression module. Optimized through preference alignment with well-curated pairwise feedback, Ext2Gen produces accurate and faithful answers even under noisy or imprecise retrieval. Experiments demonstrate that it substantially enhances the robustness of the generation backbone and yields greater performance gains than methods relying on independent compression models, e.g., Recomp, CompAct, EXIT). It further benefits from improved retrieval techniques such as query rewriting, underscoring that generation-side enhancements address limitations that retrieval alone cannot overcome.
arXiv:2503.09443v2 Announce Type: replace Abstract: Cross-lingual, cross-task transfer is challenged by task-specific data scarcity, which becomes more severe as language support grows and is further amplified in vision-language models (VLMs). We investigate multilingual generalization in encoder-decoder transformer VLMs to enable zero-shot image captioning in languages encountered only in the translation task. In this setting, the encoder must learn to generate generalizable, task-aware latent vision representations to instruct the decoder via inserted cross-attention layers. To analyze scaling behavior, we train Florence-2 based and Gemma-2 based models (0.4B to 11.2B parameters) on a synthetic dataset using varying compute budgets. While all languages in the dataset have image-aligned translations, only a subset of them include image captions. Notably, we show that captioning can emerge using a language prefix, even when this language only appears in the translation task. We find that indirect learning of unseen task-language pairs adheres to scaling laws that are governed by the multilinguality of the model, model size, and seen training samples. Finally, we demonstrate that the scaling laws extend to downstream tasks, achieving competitive performance through fine-tuning in multimodal machine translation (Multi30K, CoMMuTE), lexical disambiguation (CoMMuTE), and image captioning (Multi30K, XM3600, COCO Karpathy).
arXiv:2504.12982v2 Announce Type: replace Abstract: The proliferation of large language models (LLMs) has significantly advanced intelligent systems. Unfortunately, LLMs often face knowledge conflicts between internal memory and retrieved external information, arising from misinformation, biases, or outdated knowledge. These conflicts undermine response reliability and introduce uncertainty in decision-making. In this work, we analyze how LLMs navigate knowledge conflicts from an information-theoretic perspective and reveal that when conflicting and supplementary information exhibit significant differences, LLMs confidently resolve their preferences and alleviate the uncertainty during their response generation. When this difference is ambiguous, LLMs experience considerable uncertainty about their generation. Based on this insight, we propose Swin-VIB, a novel framework that integrates a pipeline of variational information bottleneck models to adapt the retrieved information difference, facilitating robust response generation of LLMs even in conflicting contexts. Extensive experiments confirm our theoretical analysis and demonstrate the performance of Swin-VIB. Notably, Swin-VIB outperforms all competitive baselines in terms of the accuracy of the multiple-choice task, while improving the EM values in the open-ended QA task by at least 11.14%.
arXiv:2505.15249v2 Announce Type: replace Abstract: Recently, large vision-language models (LVLMs) have emerged as the preferred tools for judging text-image alignment, yet their robustness along the visual modality remains underexplored. This work is the first study to address a key research question: Can adversarial visual manipulations systematically fool LVLM judges into assigning unfairly inflated scores? We define potential image induced biases within the context of T2I evaluation and examine how these biases affect the evaluations of LVLM judges. Moreover, we introduce a novel, fine-grained, multi-domain meta-evaluation benchmark named FRAME, which is deliberately constructed to exhibit diverse score distributions. By introducing the defined biases into the benchmark, we reveal that all tested LVLM judges exhibit vulnerability across all domains, consistently inflating scores for manipulated images. Further analysis reveals that combining multiple biases amplifies their effects, and pairwise evaluations are similarly susceptible. Moreover, we observe that visual biases persist under prompt-based mitigation strategies, highlighting the vulnerability of current LVLM evaluation systems and underscoring the urgent need for more robust LVLM judges.
arXiv:2505.19768v2 Announce Type: replace Abstract: Real-world multimodal misinformation often arises from mixed forgery sources, requiring dynamic reasoning and adaptive verification. However, existing methods mainly rely on static pipelines and limited tool usage, limiting their ability to handle such complexity and diversity. To address this challenge, we propose \method, a novel misinformation detection agent that incorporates an extensible toolkit with Monte Carlo Tree Search (MCTS). The toolkit consists of modular tools such as web search, forgery detection, and consistency analysis. Each tool is described using standardized templates, enabling seamless integration and future expansion. To avoid inefficiency from using all tools simultaneously, a greedy search-based selector is proposed to identify a task-relevant subset. This subset then serves as the action space for MCTS to dynamically collect evidence and perform multi-source verification. To better align MCTS with the multi-source nature of misinformation detection, \method~ extends traditional MCTS with multi-source verification, which decomposes the task into coordinated subtasks targeting different forgery sources. A dual reward mechanism containing a reasoning trajectory score and a confidence score is further proposed to encourage a balance between exploration across mixed forgery sources and exploitation for more reliable evidence. We conduct ablation studies to confirm the effectiveness of the tree search mechanism and tool usage. Extensive experiments further show that \method~ consistently outperforms existing baselines on challenging mixed-source multimodal misinformation benchmarks, demonstrating its strong potential as a training-free detector.
arXiv:2506.01215v2 Announce Type: replace Abstract: As large language models increasingly gain popularity in real-world applications, processing extremely long contexts, often exceeding the model's pre-trained context limits, has emerged as a critical challenge. While existing approaches to efficient long-context processing show promise, recurrent compression-based methods struggle with information preservation, whereas random access approaches require substantial memory resources. We introduce REFORM, a novel inference framework that efficiently handles long contexts through a two-phase approach. First, it incrementally processes input chunks while maintaining a compressed KV cache, constructs cross-layer context embeddings, and utilizes early exit strategy for improved efficiency. Second, it identifies and gathers essential tokens via similarity matching and selectively recomputes the KV cache. Compared to baselines, REFORM achieves over 52% and 34% performance gains on RULER and BABILong respectively at 1M context length. It also outperforms baselines on Infinite-Bench, RepoEval, and MM-NIAH, demonstrating flexibility across diverse tasks and domains. Additionally, REFORM reduces inference time by 30% and peak memory usage by 5%, achieving both efficiency and superior performance.
arXiv:2506.08552v2 Announce Type: replace Abstract: Reasoning is a key component of language understanding in Large Language Models. While Chain-of-Thought prompting enhances performance via explicit intermediate steps, it suffers from sufficient token overhead and a fixed reasoning trajectory, preventing step-wise refinement. Recent advances in latent reasoning address these limitations by refining internal reasoning processes directly in the model's latent space, without producing explicit outputs. However, a key challenge remains: how to effectively update reasoning embeddings during post-training to guide the model toward more accurate solutions. To overcome this challenge, we propose a lightweight post-training framework that refines latent reasoning trajectories using two novel strategies: 1) Contrastive reasoning feedback, which compares reasoning embeddings against strong and weak baselines to infer effective update directions via embedding enhancement; 2) Residual embedding refinement, which stabilizes updates by progressively integrating current and historical gradients, enabling fast yet controlled convergence. Extensive experiments and case studies are conducted on five reasoning benchmarks to demonstrate the effectiveness of the proposed framework. Notably, a 5\% accuracy gain on MathQA without additional training.
arXiv:2506.23921v4 Announce Type: replace Abstract: The public often attributes human-like qualities to large language models (LLMs) and assumes they "know" certain things. In reality, LLMs encode information retained during training as internal probabilistic knowledge. This study examines existing methods for probing the veracity of that knowledge and identifies several flawed underlying assumptions. To address these flaws, we introduce sAwMIL (Sparse-Aware Multiple-Instance Learning), a multiclass probing framework that combines multiple-instance learning with conformal prediction. sAwMIL leverages internal activations of LLMs to classify statements as true, false, or neither. We evaluate sAwMIL across 16 open-source LLMs, including default and chat-based variants, on three new curated datasets. Our results show that (1) common probing methods fail to provide a reliable and transferable veracity direction and, in some settings, perform worse than zero-shot prompting; (2) truth and falsehood are not encoded symmetrically; and (3) LLMs encode a third type of signal that is distinct from both true and false.
arXiv:2507.22564v2 Announce Type: replace Abstract: Large Language Models (LLMs) demonstrate impressive capabilities across a wide range of tasks, yet their safety mechanisms remain susceptible to adversarial attacks that exploit cognitive biases -- systematic deviations from rational judgment. Unlike prior jailbreaking approaches focused on prompt engineering or algorithmic manipulation, this work highlights the overlooked power of multi-bias interactions in undermining LLM safeguards. We propose CognitiveAttack, a novel red-teaming framework that systematically leverages both individual and combined cognitive biases. By integrating supervised fine-tuning and reinforcement learning, CognitiveAttack generates prompts that embed optimized bias combinations, effectively bypassing safety protocols while maintaining high attack success rates. Experimental results reveal significant vulnerabilities across 30 diverse LLMs, particularly in open-source models. CognitiveAttack achieves a substantially higher attack success rate compared to the SOTA black-box method PAP (60.1% vs. 31.6%), exposing critical limitations in current defense mechanisms. These findings highlight multi-bias interactions as a powerful yet underexplored attack vector. This work introduces a novel interdisciplinary perspective by bridging cognitive science and LLM safety, paving the way for more robust and human-aligned AI systems.
arXiv:2508.00709v3 Announce Type: replace Abstract: Legal Judgment Prediction (LJP) has emerged as a key area in AI for law, aiming to automate judicial outcome forecasting and enhance interpretability in legal reasoning. While previous approaches in the Indian context have relied on internal case content such as facts, issues, and reasoning, they often overlook a core element of common law systems, which is reliance on statutory provisions and judicial precedents. In this work, we propose NyayaRAG, a Retrieval-Augmented Generation (RAG) framework that simulates realistic courtroom scenarios by providing models with factual case descriptions, relevant legal statutes, and semantically retrieved prior cases. NyayaRAG evaluates the effectiveness of these combined inputs in predicting court decisions and generating legal explanations using a domain-specific pipeline tailored to the Indian legal system. We assess performance across various input configurations using both standard lexical and semantic metrics as well as LLM-based evaluators such as G-Eval. Our results show that augmenting factual inputs with structured legal knowledge significantly improves both predictive accuracy and explanation quality.
arXiv:2508.06105v2 Announce Type: replace Abstract: Large language models (LLMs) often suffer from hallucination, generating factually incorrect statements when handling questions beyond their knowledge and perception. Retrieval-augmented generation (RAG) addresses this by retrieving query-relevant contexts from knowledge bases to support LLM reasoning. Recent advances leverage pre-constructed graphs to capture the relational connections among distributed documents, showing remarkable performance in complex tasks. However, existing Graph-based RAG (GraphRAG) methods rely on a costly process to transform the corpus into a graph, introducing overwhelming token cost and update latency. Moreover, real-world queries vary in type and complexity, requiring different logic structures for accurate reasoning. The pre-built graph may not align with these required structures, resulting in ineffective knowledge retrieval. To this end, we propose a $\textbf{Logic}$-aware $\textbf{R}etrieval$-$\textbf{A}$ugmented $\textbf{G}$eneration framework ($\textbf{LogicRAG}$) that dynamically extracts reasoning structures at inference time to guide adaptive retrieval without any pre-built graph. LogicRAG begins by decomposing the input query into a set of subproblems and constructing a directed acyclic graph (DAG) to model the logical dependencies among them. To support coherent multi-step reasoning, LogicRAG then linearizes the graph using topological sort, so that subproblems can be addressed in a logically consistent order. Besides, LogicRAG applies graph pruning to reduce redundant retrieval and uses context pruning to filter irrelevant context, significantly reducing the overall token cost. Extensive experiments demonstrate that LogicRAG achieves both superior performance and efficiency compared to state-of-the-art baselines.
arXiv:2508.06194v2 Announce Type: replace Abstract: Accurate jailbreak evaluation is critical for LLM red team testing and jailbreak research. Mainstream methods rely on binary classification (string matching, toxic text classifiers, and LLM-based methods), outputting only "yes/no" labels without quantifying harm severity. Emerged multi-dimensional frameworks (e.g., Security Violation, Relative Truthfulness and Informativeness) use unified evaluation standards across scenarios, leading to scenario-specific mismatches (e.g., "Relative Truthfulness" is irrelevant to "hate speech"), undermining evaluation accuracy. To address these, we propose SceneJailEval, with key contributions: (1) A pioneering scenario-adaptive multi-dimensional framework for jailbreak evaluation, overcoming the critical "one-size-fits-all" limitation of existing multi-dimensional methods, and boasting robust extensibility to seamlessly adapt to customized or emerging scenarios. (2) A novel 14-scenario dataset featuring rich jailbreak variants and regional cases, addressing the long-standing gap in high-quality, comprehensive benchmarks for scenario-adaptive evaluation. (3) SceneJailEval delivers state-of-the-art performance with an F1 score of 0.917 on our full-scenario dataset (+6% over SOTA) and 0.995 on JBB (+3% over SOTA), breaking through the accuracy bottleneck of existing evaluation methods in heterogeneous scenarios and solidifying its superiority.
arXiv:2508.18212v2 Announce Type: replace Abstract: The emergence of LM-based judging reward modeling, represented by generative reward models, has successfully made reinforcement learning from AI feedback (RLAIF) efficient and scalable. To further advance this paradigm, we propose a core insight: this form of reward modeling shares fundamental formal consistency with natural language inference (NLI), a core task in natural language understanding. This reframed perspective points to a key path for building superior reward models: scaling the model's comprehension boundaries. Pursuing this path, exploratory experiments on NLI tasks demonstrate that the slot prediction masked language models (MLMs) incorporating contextual explanations achieve significantly better performance compared to mainstream autoregressive models. Based on this key finding, we propose ESFP-RM, a two-stage LM-based judging reward model that utilizes an explanation based slot framework for prediction to fully leverage the advantages of MLMs. Extensive experiments demonstrate that in both reinforcement learning from human feedback (RLHF) and out-of-distribution (OOD) scenarios, the ESFP-RM framework delivers more stable and generalizable reward signals compared to generative reward models.
arXiv:2509.02492v3 Announce Type: replace Abstract: Significant progress in reward modeling over recent years has been driven by a paradigm shift from task-specific designs towards generalist reward models. Despite this trend, developing effective reward models remains a fundamental challenge: the heavy reliance on large-scale labeled preference data. Pre-training on abundant unlabeled data offers a promising direction, but existing approaches fall short of instilling explicit reasoning into reward models. To bridge this gap, we propose a self-training approach that leverages unlabeled data to elicit reward reasoning in reward models. Based on this approach, we develop GRAM-R$^2$, a generative reward model trained to produce not only preference labels but also accompanying reward rationales. GRAM-R$^2$ can serve as a foundation model for reward reasoning and can be applied to a wide range of tasks with minimal or no additional fine-tuning. It can support downstream applications such as response ranking and task-specific reward tuning. Experiments on response ranking, task adaptation, and reinforcement learning from human feedback demonstrate that GRAM-R$^2$ consistently delivers strong performance, outperforming several strong discriminative and generative baselines.
arXiv:2511.11787v1 Announce Type: cross Abstract: Systematics contaminate observables, leading to distribution shifts relative to theoretically simulated signals-posing a major challenge for using pre-trained models to label such observables. Since systematics are often poorly understood and difficult to model, removing them directly and entirely may not be feasible. To address this challenge, we propose a novel method that aligns learned features between in-distribution (ID) and out-of-distribution (OOD) samples by optimizing a feature-alignment loss on the representations extracted from a pre-trained ID model. We first experimentally validate the method on the MNIST dataset using possible alignment losses, including mean squared error and optimal transport, and subsequently apply it to large-scale maps of neutral hydrogen. Our results show that optimal transport is particularly effective at aligning OOD features when parity between ID and OOD samples is unknown, even with limited data-mimicking real-world conditions in extracting information from large-scale surveys. Our code is available at https://github.com/sultan-hassan/feature-alignment-for-OOD-generalization.
arXiv:2510.03898v2 Announce Type: replace Abstract: Detecting media bias is crucial, specifically in the South Asian region. Despite this, annotated datasets and computational studies for Bangla political bias research remain scarce. Crucially because, political stance detection in Bangla news requires understanding of linguistic cues, cultural context, subtle biases, rhetorical strategies, code-switching, implicit sentiment, and socio-political background. To address this, we introduce the first benchmark dataset of 200 politically significant and highly debated Bangla news articles, labeled for government-leaning, government-critique, and neutral stances, alongside diagnostic analyses for evaluating large language models (LLMs). Our comprehensive evaluation of 28 proprietary and open-source LLMs shows strong performance in detecting government-critique content (F1 up to 0.83) but substantial difficulty with neutral articles (F1 as low as 0.00). Models also tend to over-predict government-leaning stances, often misinterpreting ambiguous narratives. This dataset and its associated diagnostics provide a foundation for advancing stance detection in Bangla media research and offer insights for improving LLM performance in low-resource languages.
arXiv:2510.18434v3 Announce Type: replace Abstract: Chain-of-Thought (CoT) is widely applied to enhance the LLM capability in math, coding and reasoning tasks. However, its performance is limited for open-domain tasks, when there are no clearly defined reasoning steps or logical transitions. To mitigate such challenges, we propose a new prompt-based paradigm called Chain of Conceptual Thoughts (CoCT), which suggests the LLM first to produce the tag of concepts, then complete the detailed content following the concept. To encourage this hierarchical way of thinking, we implement the concepts with emotions, strategies and topics. We experiment with this paradigm in daily and emotional support conversations, covering tasks with both in-domain and out-of-domain concept settings. Automatic, human, and LLM-based evaluations reveal that CoCT surpasses several prompt-based baselines such as self-refine, ECoT, SoT and RAG, suggesting a potential solution of LLM prompting paradigm for a wider scope of tasks.