Latest

Fresh from the feed

Filter by timeframe and category to zero in on the moves that matter.

Global universal approximation of functional input maps on weighted spaces
paper
arXiv stat.ML3 days ago

arXiv:2306.03303v5 Announce Type: replace Abstract: We introduce so-called functional input neural networks defined on a possibly infinite dimensional weighted space with values also in a possibly infinite dimensional output space. To this end, we use an additive family to map the input weighted space to the hidden layer, on which a non-linear scalar activation function is applied to each neuron, and finally return the output via some linear readouts. Relying on Stone-Weierstrass theorems on weighted spaces, we can prove a global universal approximation result on weighted spaces for continuous functions going beyond the usual approximation on compact sets. This then applies in particular to approximation of (non-anticipative) path space functionals via functional input neural networks. As a further application of the weighted Stone-Weierstrass theorem we prove a global universal approximation result for linear functions of the signature. We also introduce the viewpoint of Gaussian process regression in this setting and emphasize that the reproducing kernel Hilbert space of the signature kernels are Cameron-Martin spaces of certain Gaussian processes. This paves a way towards uncertainty quantification for signature kernel regression.

#ai
Score · 2.80
Bayes-Optimal Fair Classification with Multiple Sensitive Features
paper
arXiv stat.ML3 days ago

arXiv:2505.00631v2 Announce Type: replace Abstract: Existing theoretical work on Bayes-optimal fair classifiers usually considers a single (binary) sensitive feature. In practice, individuals are often defined by multiple sensitive features. In this paper, we characterize the Bayes-optimal fair classifier for multiple sensitive features under general approximate fairness measures, including mean difference and mean ratio. We show that these approximate measures for existing group fairness notions, including Demographic Parity, Equal Opportunity, Predictive Equality, and Accuracy Parity, are linear transformations of selection rates for specific groups defined by both labels and sensitive features. We then characterize that Bayes-optimal fair classifiers for multiple sensitive features become instance-dependent thresholding rules that rely on a weighted sum of these group membership probabilities. Our framework applies to both attribute-aware and attribute-blind settings and can accommodate composite fairness notions like Equalized Odds. Building on this, we propose two practical algorithms for Bayes-optimal fair classification via in-processing and post-processing. We show empirically that our methods compare favorably to existing methods.

#ai
#research
Score · 2.80
Neuro-Logic Lifelong Learning
paper
arXiv cs.LG3 days ago

arXiv:2511.12793v1 Announce Type: cross Abstract: Solving Inductive Logic Programming (ILP) problems with neural networks is a key challenge in Neural-Symbolic Ar- tificial Intelligence (AI). While most research has focused on designing novel network architectures for individual prob- lems, less effort has been devoted to exploring new learning paradigms involving a sequence of problems. In this work, we investigate lifelong learning ILP, which leverages the com- positional and transferable nature of logic rules for efficient learning of new problems. We introduce a compositional framework, demonstrating how logic rules acquired from ear- lier tasks can be efficiently reused in subsequent ones, leading to improved scalability and performance. We formalize our approach and empirically evaluate it on sequences of tasks. Experimental results validate the feasibility and advantages of this paradigm, opening new directions for continual learn- ing in Neural-Symbolic AI.

#ai
#research
Score · 2.80
Tissue Aware Nuclei Detection and Classification Model for Histopathology Images
paper
arXiv cs.CV3 days ago

arXiv:2511.13615v1 Announce Type: new Abstract: Accurate nuclei detection and classification are fundamental to computational pathology, yet existing approaches are hindered by reliance on detailed expert annotations and insufficient use of tissue context. We present Tissue-Aware Nuclei Detection (TAND), a novel framework achieving joint nuclei detection and classification using point-level supervision enhanced by tissue mask conditioning. TAND couples a ConvNeXt-based encoder-decoder with a frozen Virchow-2 tissue segmentation branch, where semantic tissue probabilities selectively modulate the classification stream through a novel multi-scale Spatial Feature-wise Linear Modulation (Spatial-FiLM). On the PUMA benchmark, TAND achieves state-of-the-art performance, surpassing both tissue-agnostic baselines and mask-supervised methods. Notably, our approach demonstrates remarkable improvements in tissue-dependent cell types such as epithelium, endothelium, and stroma. To the best of our knowledge, this is the first method to condition per-cell classification on learned tissue masks, offering a practical pathway to reduce annotation burden.

#ai
Score · 2.80
Provably Efficient Multi-Objective Bandit Algorithms under Preference-Centric Customization
paper
arXiv cs.LG3 days ago

arXiv:2502.13457v2 Announce Type: replace Abstract: Multi-objective multi-armed bandit (MO-MAB) problems traditionally aim to achieve Pareto optimality. However, real-world scenarios often involve users with varying preferences across objectives, resulting in a Pareto-optimal arm that may score high for one user but perform quite poorly for another. This highlights the need for customized learning, a factor often overlooked in prior research. To address this, we study a preference-aware MO-MAB framework in the presence of explicit user preference. It shifts the focus from achieving Pareto optimality to further optimizing within the Pareto front under preference-centric customization. To our knowledge, this is the first theoretical study of customized MO-MAB optimization with explicit user preferences. Motivated by practical applications, we explore two scenarios: unknown preference and hidden preference, each presenting unique challenges for algorithm design and analysis. At the core of our algorithms are preference estimation and preference-aware optimization mechanisms to adapt to user preferences effectively. We further develop novel analytical techniques to establish near-optimal regret of the proposed algorithms. Strong empirical performance confirm the effectiveness of our approach.

#ai
#research
Score · 2.80
FALCONEye: Finding Answers and Localizing Content in ONE-hour-long videos with multi-modal LLMs
paper
arXiv cs.CV3 days ago

arXiv:2503.19850v2 Announce Type: replace Abstract: Finding information in hour-long videos is a challenging task even for top-performing Vision Language Models (VLMs), as encoding visual content quickly exceeds available context windows. To tackle this challenge, we present FALCONEye, a novel video agent based on a training-free, model-agnostic meta-architecture composed of a VLM and a Large Language Model (LLM). FALCONEye answers open-ended questions using an exploration-based search algorithm guided by calibrated confidence from the VLM's answers. We also introduce the FALCON-Bench benchmark, extending Question Answering problem to Video Answer Search-requiring models to return both the answer and its supporting temporal window for open-ended questions in hour-long videos. With just a 7B VLM and a lightweight LLM, FALCONEye outscores all open-source 7B VLMs and comparable agents in FALCON-Bench. It further demonstrates its generalization capability in MLVU benchmark with shorter videos and different tasks, surpassing GPT-4o on single-detail tasks while slashing inference cost by roughly an order of magnitude.

#ai
#llm
Score · 2.80
Physics-Guided Image Dehazing Diffusion
paper
arXiv cs.CV3 days ago

arXiv:2504.21385v3 Announce Type: replace Abstract: Due to the domain gap between real-world and synthetic hazy images, current data-driven dehazing algorithms trained on synthetic datasets perform well on synthetic data but struggle to generalize to real-world scenarios. To address this challenge, we propose \textbf{I}mage \textbf{D}ehazing \textbf{D}iffusion \textbf{M}odels (IDDM), a novel diffusion process that incorporates the atmospheric scattering model into noise diffusion. IDDM aims to use the gradual haze formation process to help the denoising Unet robustly learn the distribution of clear images from the conditional input hazy images. We design a specialized training strategy centered around IDDM. Diffusion models are leveraged to bridge the domain gap from synthetic to real-world, while the atmospheric scattering model provides physical guidance for haze formation. During the forward process, IDDM simultaneously introduces haze and noise into clear images, and then robustly separates them during the sampling process. By training with physics-guided information, IDDM shows the ability of domain generalization, and effectively restores the real-world hazy images despite being trained on synthetic datasets. Extensive experiments demonstrate the effectiveness of our method through both quantitative and qualitative comparisons with state-of-the-art approaches.

#ai
Score · 2.80
Sumudu Neural Operator for ODEs and PDEs
paper
arXiv cs.LG3 days ago

arXiv:2511.11762v1 Announce Type: new Abstract: We introduce the Sumudu Neural Operator (SNO), a neural operator rooted in the properties of the Sumudu Transform. We leverage the relationship between the polynomial expansions of transform pairs to decompose the input space as coefficients, which are then transformed into the Sumudu Space, where the neural operator is parameterized. We evaluate the operator in ODEs (Duffing Oscillator, Lorenz System, and Driven Pendulum) and PDEs (Euler-Bernoulli Beam, Burger's Equation, Diffusion, Diffusion-Reaction, and Brusselator). SNO achieves superior performance to FNO on PDEs and demonstrates competitive accuracy with LNO on several PDE tasks, including the lowest error on the Euler-Bernoulli Beam and Diffusion Equation. Additionally, we apply zero-shot super-resolution to the PDE tasks to observe the model's capability of obtaining higher quality data from low-quality samples. These preliminary findings suggest promise for the Sumudu Transform as a neural operator design, particularly for certain classes of PDEs.

#ai
Score · 2.80
On the Trade-Off Between Transparency and Security in Adversarial Machine Learning
paper
arXiv cs.LG3 days ago

arXiv:2511.11842v1 Announce Type: new Abstract: Transparency and security are both central to Responsible AI, but they may conflict in adversarial settings. We investigate the strategic effect of transparency for agents through the lens of transferable adversarial example attacks. In transferable adversarial example attacks, attackers maliciously perturb their inputs using surrogate models to fool a defender's target model. These models can be defended or undefended, with both players having to decide which to use. Using a large-scale empirical evaluation of nine attacks across 181 models, we find that attackers are more successful when they match the defender's decision; hence, obscurity could be beneficial to the defender. With game theory, we analyze this trade-off between transparency and security by modeling this problem as both a Nash game and a Stackelberg game, and comparing the expected outcomes. Our analysis confirms that only knowing whether a defender's model is defended or not can sometimes be enough to damage its security. This result serves as an indicator of the general trade-off between transparency and security, suggesting that transparency in AI systems can be at odds with security. Beyond adversarial machine learning, our work illustrates how game-theoretic reasoning can uncover conflicts between transparency and security.

#ai
Score · 2.80
Leveraging Exogenous Signals for Hydrology Time Series Forecasting
paper
arXiv cs.LG3 days ago

arXiv:2511.11849v1 Announce Type: new Abstract: Recent advances in time series research facilitate the development of foundation models. While many state-of-the-art time series foundation models have been introduced, few studies examine their effectiveness in specific downstream applications in physical science. This work investigates the role of integrating domain knowledge into time series models for hydrological rainfall-runoff modeling. Using the CAMELS-US dataset, which includes rainfall and runoff data from 671 locations with six time series streams and 30 static features, we compare baseline and foundation models. Results demonstrate that models incorporating comprehensive known exogenous inputs outperform more limited approaches, including foundation models. Notably, incorporating natural annual periodic time series contribute the most significant improvements.

#ai
#research
Score · 2.80
FLEX: Feature Importance from Layered Counterfactual Explanations
paper
arXiv cs.LG3 days ago

arXiv:2511.11891v1 Announce Type: new Abstract: Machine learning models achieve state-of-the-art performance across domains, yet their lack of interpretability limits safe deployment in high-stakes settings. Counterfactual explanations are widely used to provide actionable "what-if" recourse, but they typically remain instance-specific and do not quantify which features systematically drive outcome changes within coherent regions of the feature space or across an entire dataset. We introduce FLEX (Feature importance from Layered counterfactual EXplanations), a model- and domain-agnostic framework that converts sets of counterfactuals into feature change frequency scores at local, regional, and global levels. FLEX generalises local change-frequency measures by aggregating across instances and neighbourhoods, offering interpretable rankings that reflect how often each feature must change to flip predictions. The framework is compatible with different counterfactual generation methods, allowing users to emphasise characteristics such as sparsity, feasibility, or actionability, thereby tailoring the derived feature importances to practical constraints. We evaluate FLEX on two contrasting tabular tasks: traffic accident severity prediction and loan approval, and compare FLEX to SHAP- and LIME-derived feature importance values. Results show that (i) FLEX's global rankings correlate with SHAP while surfacing additional drivers, and (ii) regional analyses reveal context-specific factors that global summaries miss. FLEX thus bridges the gap between local recourse and global attribution, supporting transparent and intervention-oriented decision-making in risk-sensitive applications.

#ai
Score · 2.80
Chain-of-Generation: Progressive Latent Diffusion for Text-Guided Molecular Design
paper
arXiv cs.LG3 days ago

arXiv:2511.11894v1 Announce Type: new Abstract: Text-conditioned molecular generation aims to translate natural-language descriptions into chemical structures, enabling scientists to specify functional groups, scaffolds, and physicochemical constraints without handcrafted rules. Diffusion-based models, particularly latent diffusion models (LDMs), have recently shown promise by performing stochastic search in a continuous latent space that compactly captures molecular semantics. Yet existing methods rely on one-shot conditioning, where the entire prompt is encoded once and applied throughout diffusion, making it hard to satisfy all the requirements in the prompt. We discuss three outstanding challenges of one-shot conditioning generation, including the poor interpretability of the generated components, the failure to generate all substructures, and the overambition in considering all requirements simultaneously. We then propose three principles to address those challenges, motivated by which we propose Chain-of-Generation (CoG), a training-free multi-stage latent diffusion framework. CoG decomposes each prompt into curriculum-ordered semantic segments and progressively incorporates them as intermediate goals, guiding the denoising trajectory toward molecules that satisfy increasingly rich linguistic constraints. To reinforce semantic guidance, we further introduce a post-alignment learning phase that strengthens the correspondence between textual and molecular latent spaces. Extensive experiments on benchmark and real-world tasks demonstrate that CoG yields higher semantic alignment, diversity, and controllability than one-shot baselines, producing molecules that more faithfully reflect complex, compositional prompts while offering transparent insight into the generation process.

#ai
Score · 2.80
Open Banking Foundational Model: Learning Language Representations from Few Financial Transactions
paper
arXiv cs.LG3 days ago

arXiv:2511.12154v1 Announce Type: new Abstract: We introduced a multimodal foundational model for financial transactions that integrates both structured attributes and unstructured textual descriptions into a unified representation. By adapting masked language modeling to transaction sequences, we demonstrated that our approach not only outperforms classical feature engineering and discrete event sequence methods but is also particularly effective in data-scarce Open Banking scenarios. To our knowledge, this is the first large-scale study across thousands of financial institutions in North America, providing evidence that multimodal representations can generalize across geographies and institutions. These results highlight the potential of self-supervised models to advance financial applications ranging from fraud prevention and credit risk to customer insights

#research
Score · 2.80
Appa: Bending Weather Dynamics with Latent Diffusion Models for Global Data Assimilation
paper
arXiv cs.LG3 days ago

arXiv:2504.18720v2 Announce Type: replace Abstract: Deep learning has advanced weather forecasting, but accurate predictions first require identifying the current state of the atmosphere from observational data. In this work, we introduce Appa, a score-based data assimilation model generating global atmospheric trajectories at 0.25\si{\degree} resolution and 1-hour intervals. Powered by a 565M-parameter latent diffusion model trained on ERA5, Appa can be conditioned on arbitrary observations to infer plausible trajectories, without retraining. Our probabilistic framework handles reanalysis, filtering, and forecasting, within a single model, producing physically consistent reconstructions from various inputs. Results establish latent score-based data assimilation as a promising foundation for future global atmospheric modeling systems.

#ai
Score · 2.80
Graph Neural Network-Based Reinforcement Learning for Controlling Biological Networks - the GATTACA Framework
paper
arXiv cs.LG3 days ago

arXiv:2505.02712v3 Announce Type: replace Abstract: Cellular reprogramming, the artificial transformation of one cell type into another, has been attracting increasing research attention due to its therapeutic potential for complex diseases. However, identifying effective reprogramming strategies through classical wet-lab experiments is hindered by lengthy time commitments and high costs. In this study, we explore the use of deep reinforcement learning (DRL) to control Boolean network models of complex biological systems, such as gene regulatory and signalling pathway networks. We formulate a novel control problem for Boolean network models under the asynchronous update mode, specifically in the context of cellular reprogramming. To solve it, we devise GATTACA, a scalable computational framework. To facilitate scalability of our framework, we consider previously introduced concept of a pseudo-attractor and improve the procedure for effective identification of pseudo-attractor states. We then incorporate graph neural networks with graph convolution operations into the artificial neural network approximator of the DRL agent's action-value function. This allows us to leverage the available knowledge on the structure of a biological system and to indirectly, yet effectively, encode the system's modelled dynamics into a latent representation. Experiments on several large-scale, real-world biological networks from the literature demonstrate the scalability and effectiveness of our approach.

#ai
#research
Score · 2.80
VisMem: Latent Vision Memory Unlocks Potential of Vision-Language Models
paper
arXiv cs.AI3 days ago

arXiv:2511.11007v1 Announce Type: cross Abstract: Despite the remarkable success of Vision-Language Models (VLMs), their performance on a range of complex visual tasks is often hindered by a "visual processing bottleneck": a propensity to lose grounding in visual evidence and exhibit a deficit in contextualized visual experience during prolonged generation. Drawing inspiration from human cognitive memory theory, which distinguishes short-term visually-dominant memory and long-term semantically-dominant memory, we propose VisMem, a cognitively-aligned framework that equips VLMs with dynamic latent vision memories, a short-term module for fine-grained perceptual retention and a long-term module for abstract semantic consolidation. These memories are seamlessly invoked during inference, allowing VLMs to maintain both perceptual fidelity and semantic consistency across thinking and generation. Extensive experiments across diverse visual benchmarks for understanding, reasoning, and generation reveal that VisMem delivers a significant average performance boost of 11.8% relative to the vanilla model and outperforms all counterparts, establishing a new paradigm for latent-space memory enhancement. The code will be available: https://github.com/YU-deep/VisMem.git.

#ai
#open_source
Score · 2.80
AirCopBench: A Benchmark for Multi-drone Collaborative Embodied Perception and Reasoning
paper
arXiv cs.AI3 days ago

arXiv:2511.11025v1 Announce Type: cross Abstract: Multimodal Large Language Models (MLLMs) have shown promise in single-agent vision tasks, yet benchmarks for evaluating multi-agent collaborative perception remain scarce. This gap is critical, as multi-drone systems provide enhanced coverage, robustness, and collaboration compared to single-sensor setups. Existing multi-image benchmarks mainly target basic perception tasks using high-quality single-agent images, thus failing to evaluate MLLMs in more complex, egocentric collaborative scenarios, especially under real-world degraded perception conditions.To address these challenges, we introduce AirCopBench, the first comprehensive benchmark designed to evaluate MLLMs in embodied aerial collaborative perception under challenging perceptual conditions. AirCopBench includes 14.6k+ questions derived from both simulator and real-world data, spanning four key task dimensions: Scene Understanding, Object Understanding, Perception Assessment, and Collaborative Decision, across 14 task types. We construct the benchmark using data from challenging degraded-perception scenarios with annotated collaborative events, generating large-scale questions through model-, rule-, and human-based methods under rigorous quality control. Evaluations on 40 MLLMs show significant performance gaps in collaborative perception tasks, with the best model trailing humans by 24.38% on average and exhibiting inconsistent results across tasks. Fine-tuning experiments further confirm the feasibility of sim-to-real transfer in aerial collaborative perception and reasoning.

#ai
#llm
Score · 2.80
CAMA: Enhancing Mathematical Reasoning in Large Language Models with Causal Knowledge
paper
arXiv cs.AI3 days ago

arXiv:2508.02583v3 Announce Type: replace Abstract: Large Language Models (LLMs) have demonstrated strong performance across a wide range of tasks, yet they still struggle with complex mathematical reasoning, a challenge fundamentally rooted in deep structural dependencies. To address this challenge, we propose \textbf{CA}usal \textbf{MA}thematician (\textbf{CAMA}), a two-stage causal framework that equips LLMs with explicit, reusable mathematical structure. In the learning stage, CAMA first constructs the \textbf{M}athematical \textbf{C}ausal \textbf{G}raph (\textbf{MCG}), a high-level representation of solution strategies, by combining LLM priors with causal discovery algorithms applied to a corpus of question-solution pairs. The resulting MCG encodes essential knowledge points and their causal dependencies. To better align the graph with downstream reasoning tasks, CAMA further refines the MCG through iterative feedback derived from a selected subset of the question-solution pairs. In the reasoning stage, given a new question, CAMA dynamically extracts a task-relevant subgraph from the MCG, conditioned on both the question content and the LLM's intermediate reasoning trace. This subgraph, which encodes the most pertinent knowledge points and their causal dependencies, is then injected back into the LLM to guide its reasoning process. Empirical results on real-world datasets show that CAMA significantly improves LLM performance on challenging mathematical problems. Furthermore, our experiments demonstrate that structured guidance consistently outperforms unstructured alternatives, and that incorporating asymmetric causal relationships yields greater improvements than using symmetric associations alone.

#ai
#llm
Score · 2.80
Discounted Cuts: A Stackelberg Approach to Network Disruption
paper
arXiv cs.AI3 days ago

arXiv:2511.10804v1 Announce Type: cross Abstract: We study a Stackelberg variant of the classical Most Vital Links problem, modeled as a one-round adversarial game between an attacker and a defender. The attacker strategically removes up to $k$ edges from a flow network to maximally disrupt flow between a source $s$ and a sink $t$, after which the defender optimally reroutes the remaining flow. To capture this attacker--defender interaction, we introduce a new mathematical model of discounted cuts, in which the cost of a cut is evaluated by excluding its $k$ most expensive edges. This model generalizes the Most Vital Links problem and uncovers novel algorithmic and complexity-theoretic properties. We develop a unified algorithmic framework for analyzing various forms of discounted cut problems, including minimizing or maximizing the cost of a cut under discount mechanisms that exclude either the $k$ most expensive or the $k$ cheapest edges. While most variants are NP-complete on general graphs, our main result establishes polynomial-time solvability for all discounted cut problems in our framework when the input is restricted to bounded-genus graphs, a relevant class that includes many real-world networks such as transportation and infrastructure networks. With this work, we aim to open collaborative bridges between artificial intelligence, algorithmic game theory, and operations research.

#ai
#research
Score · 2.80
The Map of Misbelief: Tracing Intrinsic and Extrinsic Hallucinations Through Attention Patterns
paper
arXiv cs.AI3 days ago

arXiv:2511.10837v1 Announce Type: cross Abstract: Large Language Models (LLMs) are increasingly deployed in safety-critical domains, yet remain susceptible to hallucinations. While prior works have proposed confidence representation methods for hallucination detection, most of these approaches rely on computationally expensive sampling strategies and often disregard the distinction between hallucination types. In this work, we introduce a principled evaluation framework that differentiates between extrinsic and intrinsic hallucination categories and evaluates detection performance across a suite of curated benchmarks. In addition, we leverage a recent attention-based uncertainty quantification algorithm and propose novel attention aggregation strategies that improve both interpretability and hallucination detection performance. Our experimental findings reveal that sampling-based methods like Semantic Entropy are effective for detecting extrinsic hallucinations but generally fail on intrinsic ones. In contrast, our method, which aggregates attention over input tokens, is better suited for intrinsic hallucinations. These insights provide new directions for aligning detection strategies with the nature of hallucination and highlight attention as a rich signal for quantifying model uncertainty.

#ai
#llm
Score · 2.80
Page 76 of 92