Fresh from the feed
Filter by timeframe and category to zero in on the moves that matter.
arXiv:2511.11169v1 Announce Type: cross Abstract: In the context of Visual Question Answering (VQA) and Agentic AI, calibration refers to how closely an AI system's confidence in its answers reflects their actual correctness. This aspect becomes especially important when such systems operate autonomously and must make decisions under visual uncertainty. While modern VQA systems, powered by advanced vision-language models (VLMs), are increasingly used in high-stakes domains like medical diagnostics and autonomous navigation due to their improved accuracy, the reliability of their confidence estimates remains under-examined. Particularly, these systems often produce overconfident responses. To address this, we introduce AlignVQA, a debate-based multi-agent framework, in which diverse specialized VLM -- each following distinct prompting strategies -- generate candidate answers and then engage in two-stage interaction: generalist agents critique, refine and aggregate these proposals. This debate process yields confidence estimates that more accurately reflect the model's true predictive performance. We find that more calibrated specialized agents produce better aligned confidences. Furthermore, we introduce a novel differentiable calibration-aware loss function called aligncal designed to fine-tune the specialized agents by minimizing an upper bound on the calibration error. This objective explicitly improves the fidelity of each agent's confidence estimates. Empirical results across multiple benchmark VQA datasets substantiate the efficacy of our approach, demonstrating substantial reductions in calibration discrepancies. Furthermore, we propose a novel differentiable calibration-aware loss to fine-tune the specialized agents and improve the quality of their individual confidence estimates based on minimising upper bound calibration error.
arXiv:2511.11172v1 Announce Type: cross Abstract: The growing popularity of group activities increased the need to develop methods for providing recommendations to a group of users based on the collective preferences of the group members. Several group recommender systems have been proposed, but these methods often struggle due to sparsity and high-dimensionality of the available data, common in many real-world applications. In this paper, we propose a group recommender system called Group Soft-Impute SVD, which leverages soft-impute singular value decomposition to enhance group recommendations. This approach addresses the challenge of sparse high-dimensional data using low-rank matrix completion. We compared the performance of Group Soft-Impute SVD with Group MF based approaches and found that our method outperforms the baselines in recall for small user groups while achieving comparable results across all group sizes when tasked on Goodbooks, Movielens, and Synthetic datasets. Furthermore, our method recovers lower matrix ranks than the baselines, demonstrating its effectiveness in handling high-dimensional data.
arXiv:2503.12180v2 Announce Type: replace-cross Abstract: Most current end-to-end (E2E) autonomous driving algorithms are built on standard vehicles in structured transportation scenarios, lacking exploration of robot navigation for unstructured scenarios such as auxiliary roads, campus roads, and indoor settings. This paper investigates E2E robot navigation in unstructured road environments. First, we introduce two data collection pipelines - one for real-world robot data and another for synthetic data generated using the Isaac Sim simulator, which together produce an unstructured robotics navigation dataset -- FreeWorld Dataset. Second, we fine-tuned an efficient E2E autonomous driving model -- VAD -- using our datasets to validate the performance and adaptability of E2E autonomous driving models in these environments. Results demonstrate that fine-tuning through our datasets significantly enhances the navigation potential of E2E autonomous driving models in unstructured robotic environments. Thus, this paper presents the first dataset targeting E2E robot navigation tasks in unstructured scenarios, and provides a benchmark based on vision-based E2E autonomous driving algorithms to facilitate the development of E2E navigation technology for logistics and service robots. The project is available on Github.
arXiv:2511.12880v1 Announce Type: new Abstract: Assessing human creativity through visual outputs, such as drawings, plays a critical role in fields including psychology, education, and cognitive science. However, current assessment practices still rely heavily on expert-based subjective scoring, which is both labor-intensive and inherently subjective. In this paper, we propose a data-driven framework for automatic and interpretable creativity assessment from drawings. Motivated by the cognitive understanding that creativity can emerge from both what is drawn (content) and how it is drawn (style), we reinterpret the creativity score as a function of these two complementary dimensions.Specifically, we first augment an existing creativity labeled dataset with additional annotations targeting content categories. Based on the enriched dataset, we further propose a multi-modal, multi-task learning framework that simultaneously predicts creativity scores, categorizes content types, and extracts stylistic features. In particular, we introduce a conditional learning mechanism that enables the model to adapt its visual feature extraction by dynamically tuning it to creativity-relevant signals conditioned on the drawing's stylistic and semantic cues.Experimental results demonstrate that our model achieves state-of-the-art performance compared to existing regression-based approaches and offers interpretable visualizations that align well with human judgments. The code and annotations will be made publicly available at https://github.com/WonderOfU9/CSCA_PRCV_2025
arXiv:2511.12878v1 Announce Type: new Abstract: Analyzing hand-object interaction in egocentric vision facilitates VR/AR applications and human-robot policy transfer. Existing research has mostly focused on modeling the behavior paradigm of interactive actions (i.e., "how to interact"). However, the more challenging and fine-grained problem of capturing the critical moments of contact and separation between the hand and the target object (i.e., "when to interact") is still underexplored, which is crucial for immersive interactive experiences in mixed reality and robotic motion planning. Therefore, we formulate this problem as temporal interaction localization (TIL). Some recent works extract semantic masks as TIL references, but suffer from inaccurate object grounding and cluttered scenarios. Although current temporal action localization (TAL) methods perform well in detecting verb-noun action segments, they rely on category annotations during training and exhibit limited precision in localizing hand-object contact/separation moments. To address these issues, we propose a novel zero-shot approach dubbed EgoLoc to localize hand-object contact and separation timestamps in egocentric videos. EgoLoc introduces hand-dynamics-guided sampling to generate high-quality visual prompts. It exploits the vision-language model to identify contact/separation attributes, localize specific timestamps, and provide closed-loop feedback for further refinement. EgoLoc eliminates the need for object masks and verb-noun taxonomies, leading to generalizable zero-shot implementation. Comprehensive experiments on the public dataset and our novel benchmarks demonstrate that EgoLoc achieves plausible TIL for egocentric videos. It is also validated to effectively facilitate multiple downstream applications in egocentric vision and robotic manipulation tasks. Code and relevant data will be released at https://github.com/IRMVLab/EgoLoc.
arXiv:2511.12001v1 Announce Type: new Abstract: Explanations are often promoted as tools for transparency, but they can also foster confirmation bias; users may assume reasoning is correct whenever outputs appear acceptable. We study this double-edged role of Chain-of-Thought (CoT) explanations in multimodal moral scenarios by systematically perturbing reasoning chains and manipulating delivery tones. Specifically, we analyze reasoning errors in vision language models (VLMs) and how they impact user trust and the ability to detect errors. Our findings reveal two key effects: (1) users often equate trust with outcome agreement, sustaining reliance even when reasoning is flawed, and (2) the confident tone suppresses error detection while maintaining reliance, showing that delivery styles can override correctness. These results highlight how CoT explanations can simultaneously clarify and mislead, underscoring the need for NLP systems to provide explanations that encourage scrutiny and critical thinking rather than blind trust. All code will be released publicly.
arXiv:2511.10780v1 Announce Type: cross Abstract: In this paper, we introduce TEDxTN, the first publicly available Tunisian Arabic to English speech translation dataset. This work is in line with the ongoing effort to mitigate the data scarcity obstacle for a number of Arabic dialects. We collected, segmented, transcribed and translated 108 TEDx talks following our internally developed annotations guidelines. The collected talks represent 25 hours of speech with code-switching that cover speakers with various accents from over 11 different regions of Tunisia. We make the annotation guidelines and corpus publicly available. This will enable the extension of TEDxTN to new talks as they become available. We also report results for strong baseline systems of Speech Recognition and Speech Translation using multiple pre-trained and fine-tuned end-to-end models. This corpus is the first open source and publicly available speech translation corpus of Code-Switching Tunisian dialect. We believe that this is a valuable resource that can motivate and facilitate further research on the natural language processing of Tunisian Dialect.
arXiv:2511.06568v2 Announce Type: replace-cross Abstract: Link prediction is a fundamental task in graph machine learning with applications, ranging from social recommendation to knowledge graph completion. Fairness in this setting is critical, as biased predictions can exacerbate societal inequalities. Prior work adopts a dyadic definition of fairness, enforcing fairness through demographic parity between intra-group and inter-group link predictions. However, we show that this dyadic framing can obscure underlying disparities across subgroups, allowing systemic biases to go undetected. Moreover, we argue that demographic parity does not meet desired properties for fairness assessment in ranking-based tasks such as link prediction. We formalize the limitations of existing fairness evaluations and propose a framework that enables a more expressive assessment. Additionally, we propose a lightweight post-processing method combined with decoupled link predictors that effectively mitigates bias and achieves state-of-the-art fairness-utility trade-offs.
arXiv:2511.12652v1 Announce Type: new Abstract: Boolean functions with strong cryptographic properties, such as high nonlinearity and algebraic degree, are important for the security of stream and block ciphers. These functions can be designed using algebraic constructions or metaheuristics. This paper examines the use of Evolutionary Algorithms (EAs) to evolve homogeneous bent Boolean functions, that is, functions whose algebraic normal form contains only monomials of the same degree and that are maximally nonlinear. We introduce the notion of density of homogeneous bent functions, facilitating the algorithmic design that results in finding quadratic and cubic bent functions in different numbers of variables.
arXiv:2511.13050v1 Announce Type: new Abstract: Brain-inspired spiking neural networks (SNNs) are recognized as a promising avenue for achieving efficient, low-energy neuromorphic computing. Direct training of SNNs typically relies on surrogate gradient (SG) learning to estimate derivatives of non-differentiable spiking activity. However, during training, the distribution of neuronal membrane potentials varies across timesteps and progressively deviates toward both sides of the firing threshold. When the firing threshold and SG remain fixed, this may lead to imbalanced spike firing and diminished gradient signals, preventing SNNs from performing well. To address these issues, we propose a novel dual-stage synergistic learning algorithm that achieves forward adaptive thresholding and backward dynamic SG. In forward propagation, we adaptively adjust thresholds based on the distribution of membrane potential dynamics (MPD) at each timestep, which enriches neuronal diversity and effectively balances firing rates across timesteps and layers. In backward propagation, drawing from the underlying association between MPD, threshold, and SG, we dynamically optimize SG to enhance gradient estimation through spatio-temporal alignment, effectively mitigating gradient information loss. Experimental results demonstrate that our method achieves significant performance improvements. Moreover, it allows neurons to fire stable proportions of spikes at each timestep and increases the proportion of neurons that obtain gradients in deeper layers.
arXiv:2511.11666v1 Announce Type: cross Abstract: Bayesian neural networks (BNNs) require scalable sampling algorithms to approximate posterior distributions over parameters. Existing stochastic gradient Markov Chain Monte Carlo (SGMCMC) methods are highly sensitive to the choice of stepsize and adaptive variants such as pSGLD typically fail to sample the correct invariant measure without addition of a costly divergence correction term. In this work, we build on the recently proposed `SamAdams' framework for timestep adaptation (Leimkuhler, Lohmann, and Whalley 2025), introducing an adaptive scheme: SA-SGLD, which employs time rescaling to modulate the stepsize according to a monitored quantity (typically the local gradient norm). SA-SGLD can automatically shrink stepsizes in regions of high curvature and expand them in flatter regions, improving both stability and mixing without introducing bias. We show that our method can achieve more accurate posterior sampling than SGLD on high-curvature 2D toy examples and in image classification with BNNs using sharp priors.
arXiv:2511.12016v1 Announce Type: cross Abstract: We propose the Modified Mahalanobis Distance Conformal Prediction (MMDCP), a unified framework for multi-class classification and outlier detection under label shift, where the training and test distributions may differ. In such settings, many existing methods construct nonconformity scores based on empirical cumulative or density functions combined with data-splitting strategies. However, these approaches are often computationally expensive due to their heavy reliance on resampling procedures and tend to produce overly conservative prediction sets with unstable coverage, especially in small samples. To address these challenges, MMDCP combines class-specific distance measures with full conformal prediction to construct a score function, thereby producing adaptive prediction sets that effectively capture both inlier and outlier structures. Under mild regularity conditions, we establish convergence rates for the resulting sets and provide the first theoretical characterization of the gap between oracle and empirical conformal $p$-values, which ensures valid coverage and effective control of the class-wise false discovery rate (CW-FDR). We further introduce the Summarized Class-Wise FDR (SCW-FDR), a novel global error metric aggregating false discoveries across classes, and show that it can be effectively controlled within the MMDCP framework. Extensive simulations and two real-data applications support our theoretical findings and demonstrate the advantages of the proposed method.
arXiv:2511.11576v1 Announce Type: new Abstract: Recent advances in large language models (LLMs) have accelerated research on automated optimization modeling. While real-world decision-making is inherently uncertain, most existing work has focused on deterministic optimization with known parameters, leaving the application of LLMs in uncertain settings largely unexplored. To that end, we propose the DAOpt framework including a new dataset OptU, a multi-agent decision-making module, and a simulation environment for evaluating LLMs with a focus on out-of-sample feasibility and robustness. Additionally, we enhance LLMs' modeling capabilities by incorporating few-shot learning with domain knowledge from stochastic and robust optimization.
arXiv:2511.11675v1 Announce Type: new Abstract: As a widely adopted model compression technique, model pruning has demonstrated strong effectiveness across various architectures. However, we observe that when sparsity exceeds a certain threshold, both iterative and one-shot pruning methods lead to a steep decline in model performance. This rapid degradation limits the achievable compression ratio and prevents models from meeting the stringent size constraints required by certain hardware platforms, rendering them inoperable. To overcome this limitation, we propose a bidirectional pruning-regrowth strategy. Starting from an extremely compressed network that satisfies hardware constraints, the method selectively regenerates critical connections to recover lost performance, effectively mitigating the sharp accuracy drop commonly observed under high sparsity conditions.
arXiv:2511.12421v1 Announce Type: cross Abstract: There is a large class of problems in algebraic combinatorics which can be distilled into the same challenge: construct an explicit combinatorial bijection. Traditionally, researchers have solved challenges like these by visually inspecting the data for patterns, formulating conjectures, and then proving them. But what is to be done if patterns fail to emerge until the data grows beyond human scale? In this paper, we propose a new workflow for discovering combinatorial bijections via machine learning. As a proof of concept, we train a transformer on paired Dyck paths and use its learned attention patterns to derive a new algorithmic description of the zeta map, which we call the \textit{Scaffolding Map}.
arXiv:2511.12423v1 Announce Type: cross Abstract: Text-attributed graphs (TAGs), which combine structural and textual node information, are ubiquitous across many domains. Recent work integrates Large Language Models (LLMs) with Graph Neural Networks (GNNs) to jointly model semantics and structure, resulting in more general and expressive models that achieve state-of-the-art performance on TAG benchmarks. However, this integration introduces dual vulnerabilities: GNNs are sensitive to structural perturbations, while LLM-derived features are vulnerable to prompt injection and adversarial phrasing. While existing adversarial attacks largely perturb structure or text independently, we find that uni-modal attacks cause only modest degradation in LLM-enhanced GNNs. Moreover, many existing attacks assume unrealistic capabilities, such as white-box access or direct modification of graph data. To address these gaps, we propose GRAPHTEXTACK, the first black-box, multi-modal{, poisoning} node injection attack for LLM-enhanced GNNs. GRAPHTEXTACK injects nodes with carefully crafted structure and semantics to degrade model performance, operating under a realistic threat model without relying on model internals or surrogate models. To navigate the combinatorial, non-differentiable search space of connectivity and feature assignments, GRAPHTEXTACK introduces a novel evolutionary optimization framework with a multi-objective fitness function that balances local prediction disruption and global graph influence. Extensive experiments on five datasets and two state-of-the-art LLM-enhanced GNN models show that GRAPHTEXTACK significantly outperforms 12 strong baselines.
arXiv:2511.12451v1 Announce Type: cross Abstract: X-ray scattering measurements of in situ human brain tissue encode structural signatures of pathological cross-$\beta$ inclusions, yet systematic exploitation of these data for automated detection remains challenging due to substrate contamination, strong inter-feature correlations, and limited sample sizes. This work develops a three-stage classification framework for identifying cross-$\beta$ structural inclusions-a hallmark of Alzheimer's disease-in X-ray scattering profiles of post-mortem human brain. Stage 1 employs a Bayes-optimal classifier to separate mica substrate from tissue regions on the basis of their distinct scattering signatures. Stage 2 introduces a multicollinearityaware, class-conditional correlation pruning scheme with formal guarantees on the induced Bayes risk and approximation error, thereby reducing redundancy while retaining class-discriminative information. Stage 3 trains a compact neural network on the pruned feature set to detect the presence or absence of cross-$\beta$ fibrillar ordering. The top-performing model, optimized with a composite loss combining Focal and Dice objectives, attains a test F1-score of 84.30% using 11 of 211 candidate features and 174 trainable parameters. The overall framework yields an interpretable, theory-grounded strategy for data-limited classification problems involving correlated, high-dimensional experimental measurements, exemplified here by X-ray scattering profiles of neurodegenerative tissue.
arXiv:2511.12065v1 Announce Type: cross Abstract: Conformal prediction offers a distribution-free framework for constructing prediction sets with finite-sample coverage. Yet, efficiently leveraging multiple conformity scores to reduce prediction set size remains a major open challenge. Instead of selecting a single best score, this work introduces a principled aggregation strategy, COnfidence-Level Allocation (COLA), that optimally allocates confidence levels across multiple conformal prediction sets to minimize empirical set size while maintaining provable coverage. Two variants are further developed, COLA-s and COLA-f, which guarantee finite-sample marginal coverage via sample splitting and full conformalization, respectively. In addition, we develop COLA-l, an individualized allocation strategy that promotes local size efficiency while achieving asymptotic conditional coverage. Extensive experiments on synthetic and real-world datasets demonstrate that COLA achieves considerably smaller prediction sets than state-of-the-art baselines while maintaining valid coverage.
arXiv:2510.17482v3 Announce Type: replace Abstract: Semantic occupancy has emerged as a powerful representation in world models for its ability to capture rich spatial semantics. However, most existing occupancy world models rely on static and fixed embeddings or grids, which inherently limit the flexibility of perception. Moreover, their ``in-place classification" over grids exhibits a potential misalignment with the dynamic and continuous nature of real scenarios. In this paper, we propose SparseWorld, a novel 4D occupancy world model that is flexible, adaptive, and efficient, powered by sparse and dynamic queries. We propose a Range-Adaptive Perception module, in which learnable queries are modulated by the ego vehicle states and enriched with temporal-spatial associations to enable extended-range perception. To effectively capture the dynamics of the scene, we design a State-Conditioned Forecasting module, which replaces classification-based forecasting with regression-guided formulation, precisely aligning the dynamic queries with the continuity of the 4D environment. In addition, We specifically devise a Temporal-Aware Self-Scheduling training strategy to enable smooth and efficient training. Extensive experiments demonstrate that SparseWorld achieves state-of-the-art performance across perception, forecasting, and planning tasks. Comprehensive visualizations and ablation studies further validate the advantages of SparseWorld in terms of flexibility, adaptability, and efficiency.
arXiv:2511.12881v1 Announce Type: cross Abstract: Leveraging the Wasserstein distance -- a summation of sample-wise transport distances in data space -- is advantageous in many applications for measuring support differences between two underlying density functions. However, when supports significantly overlap while densities exhibit substantial pointwise differences, it remains unclear whether and how this transport information can accurately identify these differences, particularly their analytic characterization in finite-sample settings. We address this issue by conducting an analysis of the information processing capabilities of the one-dimensional Wasserstein distance with finite samples. By utilizing the Poisson process and isolating the rate factor, we demonstrate the capability of capturing the pointwise density difference with Wasserstein distances and how this information harmonizes with support differences. The analyzed properties are confirmed using neural spike train decoding and amino acid contact frequency data. The results reveal that the one-dimensional Wasserstein distance highlights meaningful density differences related to both rate and support.