Fresh from the feed
Filter by timeframe and category to zero in on the moves that matter.
arXiv:2511.10658v1 Announce Type: cross Abstract: Large language models (LLMs) are increasingly used to extract structured information from free-text clinical records, but prior work often focuses on single tasks, limited models, and English-language reports. We evaluated 15 open-weight LLMs on pathology and radiology reports across six use cases, colorectal liver metastases, liver tumours, neurodegenerative diseases, soft-tissue tumours, melanomas, and sarcomas, at three institutes in the Netherlands, UK, and Czech Republic. Models included general-purpose and medical-specialised LLMs of various sizes, and six prompting strategies were compared: zero-shot, one-shot, few-shot, chain-of-thought, self-consistency, and prompt graph. Performance was assessed using task-appropriate metrics, with consensus rank aggregation and linear mixed-effects models quantifying variance. Top-ranked models achieved macro-average scores close to inter-rater agreement across tasks. Small-to-medium general-purpose models performed comparably to large models, while tiny and specialised models performed worse. Prompt graph and few-shot prompting improved performance by ~13%. Task-specific factors, including variable complexity and annotation variability, influenced results more than model size or prompting strategy. These findings show that open-weight LLMs can extract structured data from clinical reports across diseases, languages, and institutions, offering a scalable approach for clinical data curation.
arXiv:2511.10660v1 Announce Type: cross Abstract: Lossless compression techniques are crucial in an era of rapidly growing data. Traditional universal compressors like gzip offer low computational overhead, high speed, and broad applicability across data distributions. However, they often lead to worse compression rates than modern neural compressors, which leverage large-scale training data to model data distributions more effectively. Despite their advantages, neural compressors struggle to generalize to unseen data. To address this limitation, we propose a novel framework that performs Test-Time Steering via a Weighted Product of Experts (wPoE). At inference, our method adaptively combines a universal compression model with a pretrained neural language model, ensuring the compression rate is at least as good as that of the best individual model. Extensive experiments demonstrate that our approach improves the performance of text compression without requiring fine-tuning. Furthermore, it seamlessly integrates with any autoregressive language model, providing a practical solution for enhancing text compression across diverse data distributions.
arXiv:2511.10664v1 Announce Type: cross Abstract: Large language models (LLMs) have achieved impressive results in high-resource languages like English, yet their effectiveness in low-resource and morphologically rich languages remains underexplored. In this paper, we present a comprehensive evaluation of seven cutting-edge LLMs -- including GPT-4o, GPT-4, Claude~3.5~Sonnet, LLaMA~3.1, Mistral~Large~2, LLaMA-2~Chat~13B, and Mistral~7B~Instruct -- on a new cross-lingual benchmark covering \textbf{Cantonese, Japanese, and Turkish}. Our benchmark spans four diverse tasks: open-domain question answering, document summarization, English-to-X translation, and culturally grounded dialogue. We combine \textbf{human evaluations} (rating fluency, factual accuracy, and cultural appropriateness) with automated metrics (e.g., BLEU, ROUGE) to assess model performance. Our results reveal that while the largest proprietary models (GPT-4o, GPT-4, Claude~3.5) generally lead across languages and tasks, significant gaps persist in culturally nuanced understanding and morphological generalization. Notably, GPT-4o demonstrates robust multilingual performance even on cross-lingual tasks, and Claude~3.5~Sonnet achieves competitive accuracy on knowledge and reasoning benchmarks. However, all models struggle to some extent with the unique linguistic challenges of each language, such as Turkish agglutinative morphology and Cantonese colloquialisms. Smaller open-source models (LLaMA-2~13B, Mistral~7B) lag substantially in fluency and accuracy, highlighting the resource disparity. We provide detailed quantitative results, qualitative error analysis, and discuss implications for developing more culturally aware and linguistically generalizable LLMs. Our benchmark and evaluation data are released to foster reproducibility and further research.
arXiv:2511.13005v1 Announce Type: new Abstract: Large vision-language models, such as CLIP, have shown strong zero-shot classification performance by aligning images and text in a shared embedding space. However, CLIP models often develop multimodal spurious biases, which is the undesirable tendency to rely on spurious features. For example, CLIP may infer object types in images based on frequently co-occurring backgrounds rather than the object's core features. This bias significantly impairs the robustness of pre-trained CLIP models on out-of-distribution data, where such cross-modal associations no longer hold. Existing methods for mitigating multimodal spurious bias typically require fine-tuning on downstream data or prior knowledge of the bias, which undermines the out-of-the-box usability of CLIP. In this paper, we first theoretically analyze the impact of multimodal spurious bias in zero-shot classification. Based on this insight, we propose Spuriousness-Aware Guided Exploration (SAGE), a simple and effective method that mitigates spurious bias through guided prompt selection. SAGE requires no training, fine-tuning, or external annotations. It explores a space of prompt templates and selects the prompts that induce the largest semantic separation between classes, thereby improving worst-group robustness. Extensive experiments on four real-world benchmark datasets and five popular backbone models demonstrate that SAGE consistently improves zero-shot performance and generalization, outperforming previous zero-shot approaches without any external knowledge or model updates.
arXiv:2505.17644v2 Announce Type: replace-cross Abstract: Medical image reconstruction from measurement data is a vital but challenging inverse problem. Deep learning approaches have achieved promising results, but often requires paired measurement and high-quality images, which is typically simulated through a forward model, i.e., retrospective reconstruction. However, training on simulated pairs commonly leads to performance degradation on real prospective data due to the retrospective-to-prospective gap caused by incomplete imaging knowledge in simulation. To address this challenge, this paper introduces imaging Knowledge-Informed Dynamic Optimal Transport (KIDOT), a novel dynamic optimal transport framework with optimality in the sense of preserving consistency with imaging physics in transport, that conceptualizes reconstruction as finding a dynamic transport path. KIDOT learns from unpaired data by modeling reconstruction as a continuous evolution path from measurements to images, guided by an imaging knowledge-informed cost function and transport equation. This dynamic and knowledge-aware approach enhances robustness and better leverages unpaired data while respecting acquisition physics. Theoretically, we demonstrate that KIDOT naturally generalizes dynamic optimal transport, ensuring its mathematical rationale and solution existence. Extensive experiments on MRI and CT reconstruction demonstrate KIDOT's superior performance.
arXiv:2511.10667v1 Announce Type: cross Abstract: Large language models (LLMs) often achieve impressive predictive accuracy, yet correctness alone does not imply genuine understanding. True LLM understanding, analogous to human expertise, requires making consistent, well-founded decisions across multiple instances and diverse domains, relying on relevant and domain-grounded decision factors. We introduce Structured Tabular Decision Simulations (STaDS), a suite of expert-like decision settings that evaluate LLMs as if they were professionals undertaking structured decision ``exams''. In this context, understanding is defined as the ability to identify and rely on the correct decision factors, features that determine outcomes within a domain. STaDS jointly assesses understanding through: (i) question and instruction comprehension, (ii) knowledge-based prediction, and (iii) reliance on relevant decision factors. By analyzing 9 frontier LLMs across 15 diverse decision settings, we find that (a) most models struggle to achieve consistently strong accuracy across diverse domains; (b) models can be accurate yet globally unfaithful, and there are frequent mismatches between stated rationales and factors driving predictions. Our findings highlight the need for global-level understanding evaluation protocols and advocate for novel frameworks that go beyond accuracy to enhance LLMs' understanding ability.
arXiv:2511.10670v1 Announce Type: cross Abstract: Code-switching (CS) speech translation (ST) refers to translating speech that alternates between two or more languages into a target language text, which poses significant challenges due to the complexity of semantic modeling and the scarcity of CS data. Previous studies tend to rely on the model itself to implicitly learn semantic modeling during training, and resort to inefficient and costly manual annotations for these two challenges. To mitigate these limitations, we propose enhancing Large Language Models (LLMs) with a Mixture of Experts (MoE) speech projector, where each expert specializes in the semantic subspace of a specific language, enabling fine-grained modeling of speech features. Additionally, we introduce a multi-stage training paradigm that utilizes readily available monolingual automatic speech recognition (ASR) and monolingual ST data, facilitating speech-text alignment and improving translation capabilities. During training, we leverage a combination of language-specific loss and intra-group load balancing loss to guide the MoE speech projector in efficiently allocating tokens to the appropriate experts, across expert groups and within each group, respectively. To bridge the data gap across different training stages and improve adaptation to the CS scenario, we further employ a transition loss, enabling smooth transitions of data between stages, to effectively address the scarcity of high-quality CS speech translation data. Extensive experiments on widely used datasets demonstrate the effectiveness and generality of our approach.
arXiv:2511.10674v1 Announce Type: cross Abstract: Large Language Models (LLMs) can generate SQL queries from natural language questions but struggle with database-specific schemas and tacit domain knowledge. We introduce a framework for continual learning from human feedback in text-to-SQL, where a learning agent receives natural language feedback to refine queries and distills the revealed knowledge for reuse on future tasks. This distilled knowledge is stored in a structured memory, enabling the agent to improve execution accuracy over time. We design and evaluate multiple variations of a learning agent architecture that vary in how they capture and retrieve past experiences. Experiments on the BIRD benchmark Dev set show that memory-augmented agents, particularly the Procedural Agent, achieve significant accuracy gains and error reduction by leveraging human-in-the-loop feedback. Our results highlight the importance of transforming tacit human expertise into reusable knowledge, paving the way for more adaptive, domain-aware text-to-SQL systems that continually learn from a human-in-the-loop.
arXiv:2511.13011v1 Announce Type: new Abstract: Under extremely low-light conditions, novel view synthesis (NVS) faces severe degradation in terms of geometry, color consistency, and radiometric stability. Standard 3D Gaussian Splatting (3DGS) pipelines fail when applied directly to underexposed inputs, as independent enhancement across views causes illumination inconsistencies and geometric distortion. To address this, we present DTGS, a unified framework that tightly couples Retinex-inspired illumination decomposition with thermal-guided 3D Gaussian Splatting for illumination-invariant reconstruction. Unlike prior approaches that treat enhancement as a pre-processing step, DTGS performs joint optimization across enhancement, geometry, and thermal supervision through a cyclic enhancement-reconstruction mechanism. A thermal supervisory branch stabilizes both color restoration and geometry learning by dynamically balancing enhancement, structural, and thermal losses. Moreover, a Retinex-based decomposition module embedded within the 3DGS loop provides physically interpretable reflectance-illumination separation, ensuring consistent color and texture across viewpoints. To evaluate our method, we construct RGBT-LOW, a new multi-view low-light thermal dataset capturing severe illumination degradation. Extensive experiments show that DTGS significantly outperforms existing low-light enhancement and 3D reconstruction baselines, achieving superior radiometric consistency, geometric fidelity, and color stability under extreme illumination.
arXiv:2511.10676v1 Announce Type: cross Abstract: Mixture-of-Experts (MoE) Large Language Models (LLMs) efficiently scale-up the model while keeping relatively low inference cost. As MoE models only activate part of the experts, related work has proposed expert prediction and caching methods to prefetch the experts for faster inference. However, existing approaches utilize the activations from the previous layer for prediction, incurring low accuracy and leave the first layer unoptimized. Applying complex layers or even training standalone networks for better prediction introduces high computation overhead. In this paper, we propose pre-attention expert prediction to achieve accurate and lightweight expert prefetching. The key insight is that some functions in LLMs are ranking-preserving, indicating that matching the ranking of selected experts using simple linear functions is possible. Therefore, we utilize the activations before the attention block in the same layer with 2 linear functions and ranking-aware loss to achieve accurate prediction, which also supports prefetching in the first layer. Our lightweight, pre-attention expert routers achieve 93.03% accuracy on DeepSeek V2 Lite, 94.69% on Qwen3-30B, and 97.62% on Phi-mini-MoE, showing about 15% improvement on absolute accuracy over the state-of-the-art methods.
arXiv:2511.10687v1 Announce Type: cross Abstract: Large Language Models (LLMs) in multi-agent systems (MAS) have shown promise for complex tasks, yet current training methods lack principled ways to connect system-level evaluation with agent-level and message-level learning. We propose a theoretical framework that unifies cooperative game-theoretic attribution with process reward modeling to transform system evaluation into agent credit and then into response-level signals. Unlike prior approaches that rely only on attribution (e.g., Shapley) or step-level labels (e.g., PRM), our method produces local, signed, and credit-conserving signals. In success cases, Shapley-based credit assignment fairly allocates outcomes across agents and is refined into per-message rewards that promote cooperation while discouraging redundancy or sabotage. In failure cases, first-error localization yields repair-aware preferences that penalize harmful steps while rewarding corrective attempts. The resulting signals are bounded, cooperative, and directly compatible with reinforcement-based or preference-based post-training, providing a unified and auditable pathway from global evaluation to local supervision in LLM multi-agent training. Our contribution is conceptual: we present a theoretical foundation and training signals, leaving empirical validation for future work.
arXiv:2511.10689v1 Announce Type: cross Abstract: Recursive prompting with large language models enables scalable synthetic dataset generation but introduces the risk of bias amplification. We investigate gender bias dynamics across three generations of recursive text generation using three complementary evaluation frameworks: rule-based pattern matching, embedding-based semantic similarity, and downstream task performance. Experiments with three initial bias levels (0.1, 0.3, 0.6) and four mitigation strategies reveal equilibrium dynamics rather than monotonic amplification. The low initial bias amplifies toward the model's inherent bias level (+36%), whereas the high initial bias decays toward it (-26%). Among mitigation methods, contrastive augmentation, which introduces gender-swapped variants, achieves significant downstream bias reduction (98.8% for low initial bias and 91% on average) despite producing higher embedding-based bias scores. This paradox demonstrates that semantic similarity metrics may diverge from behavioral fairness outcomes, highlighting the need for multidimensional evaluation in responsible synthetic data generation.
arXiv:2511.13013v1 Announce Type: new Abstract: Moving infrared small target detection is a key component of infrared search and tracking systems, yet it remains extremely challenging due to low signal-to-clutter ratios, severe target-background imbalance, and weak discriminative features. Existing deep learning methods primarily focus on spatio-temporal feature aggregation, but their gains are limited, revealing that the fundamental bottleneck lies in ambiguous per-frame feature representations rather than spatio-temporal modeling itself. Motivated by this insight, we propose BP-FPN, a backpropagation-driven feature pyramid architecture that fundamentally rethinks feature learning for small target. BP-FPN introduces Gradient-Isolated Low-Level Shortcut (GILS) to efficiently incorporate fine-grained target details without inducing shortcut learning, and Directional Gradient Regularization (DGR) to enforce hierarchical feature consistency during backpropagation. The design is theoretically grounded, introduces negligible computational overhead, and can be seamlessly integrated into existing frameworks. Extensive experiments on multiple public datasets show that BP-FPN consistently establishes new state-of-the-art performance. To the best of our knowledge, it is the first FPN designed for this task entirely from the backpropagation perspective.
arXiv:2511.13015v1 Announce Type: new Abstract: Universal Photometric Stereo is a promising approach for recovering surface normals without strict lighting assumptions. However, it struggles when multi-illumination cues are unreliable, such as under biased lighting or in shadows or self-occluded regions of complex in-the-wild scenes. We propose GeoUniPS, a universal photometric stereo network that integrates synthetic supervision with high-level geometric priors from large-scale 3D reconstruction models pretrained on massive in-the-wild data. Our key insight is that these 3D reconstruction models serve as visual-geometry foundation models, inherently encoding rich geometric knowledge of real scenes. To leverage this, we design a Light-Geometry Dual-Branch Encoder that extracts both multi-illumination cues and geometric priors from the frozen 3D reconstruction model. We also address the limitations of the conventional orthographic projection assumption by introducing the PS-Perp dataset with realistic perspective projection to enable learning of spatially varying view directions. Extensive experiments demonstrate that GeoUniPS delivers state-of-the-arts performance across multiple datasets, both quantitatively and qualitatively, especially in the complex in-the-wild scenes.
arXiv:2511.13019v1 Announce Type: new Abstract: MeanFlow (MF) is a diffusion-motivated generative model that enables efficient few-step generation by learning long jumps directly from noise to data. In practice, it is often used as a latent MF by leveraging the pre-trained Stable Diffusion variational autoencoder (SD-VAE) for high-dimensional data modeling. However, MF training remains computationally demanding and is often unstable. During inference, the SD-VAE decoder dominates the generation cost, and MF depends on complex guidance hyperparameters for class-conditional generation. In this work, we develop an efficient training and sampling scheme for MF in the latent space of a Representation Autoencoder (RAE), where a pre-trained vision encoder (e.g., DINO) provides semantically rich latents paired with a lightweight decoder. We observe that naive MF training in the RAE latent space suffers from severe gradient explosion. To stabilize and accelerate training, we adopt Consistency Mid-Training for trajectory-aware initialization and use a two-stage scheme: distillation from a pre-trained flow matching teacher to speed convergence and reduce variance, followed by an optional bootstrapping stage with a one-point velocity estimator to further reduce deviation from the oracle mean flow. This design removes the need for guidance, simplifies training configurations, and reduces computation in both training and sampling. Empirically, our method achieves a 1-step FID of 2.03, outperforming vanilla MF's 3.43, while reducing sampling GFLOPS by 38% and total training cost by 83% on ImageNet 256. We further scale our approach to ImageNet 512, achieving a competitive 1-step FID of 3.23 with the lowest GFLOPS among all baselines. Code is available at https://github.com/sony/mf-rae.
arXiv:2505.19361v3 Announce Type: replace-cross Abstract: The deployment of pre-trained perception models in novel environments often leads to performance degradation due to distributional shifts. Although recent artificial intelligence approaches for metacognition use logical rules to characterize and filter model errors, improving precision often comes at the cost of reduced recall. This paper addresses the hypothesis that leveraging multiple pre-trained models can mitigate this recall reduction. We formulate the challenge of identifying and managing conflicting predictions from various models as a consistency-based abduction problem, building on the idea of abductive learning (ABL) but applying it to test-time instead of training. The input predictions and the learned error detection rules derived from each model are encoded in a logic program. We then seek an abductive explanation--a subset of model predictions--that maximizes prediction coverage while ensuring the rate of logical inconsistencies (derived from domain constraints) remains below a specified threshold. We propose two algorithms for this knowledge representation task: an exact method based on Integer Programming (IP) and an efficient Heuristic Search (HS). Through extensive experiments on a simulated aerial imagery dataset featuring controlled, complex distributional shifts, we demonstrate that our abduction-based framework outperforms individual models and standard ensemble baselines, achieving, for instance, average relative improvements of approximately 13.6\% in F1-score and 16.6\% in accuracy across 15 diverse test datasets when compared to the best individual model. Our results validate the use of consistency-based abduction as an effective mechanism to robustly integrate knowledge from multiple imperfect models in challenging, novel scenarios.
arXiv:2511.10691v1 Announce Type: cross Abstract: Contemporary benchmarks are struggling to keep pace with the development of large language models (LLMs). Although they are indispensable to evaluate model performance on various tasks, it is uncertain whether the models trained on Internet data have genuinely learned how to solve problems or merely seen the questions before. This potential data contamination issue presents a fundamental challenge to establishing trustworthy evaluation frameworks. Meanwhile, existing benchmarks predominantly assume benign, resource-rich settings, leaving the behavior of LLMs under pressure unexplored. In this paper, we introduce Squid Game, a dynamic and adversarial evaluation environment with resource-constrained and asymmetric information settings elaborated to evaluate LLMs through interactive gameplay against other LLM opponents. Notably, Squid Game consists of six elimination-style levels, focusing on multi-faceted abilities, such as instruction-following, code, reasoning, planning, and safety alignment. We evaluate over 50 LLMs on Squid Game, presenting the largest behavioral evaluation study of general LLMs on dynamic adversarial scenarios. We observe a clear generational phase transition on performance in the same model lineage and find evidence that some models resort to speculative shortcuts to win the game, indicating the possibility of higher-level evaluation paradigm contamination in static benchmarks. Furthermore, we compare prominent LLM benchmarks and Squid Game with correlation analyses, highlighting that dynamic evaluation can serve as a complementary part for static evaluations. The code and data will be released in the future.
arXiv:2511.10696v1 Announce Type: cross Abstract: Transformers have revolutionized natural language processing, but their quadratic complexity with respect to sequence length remains a fundamental bottleneck for long-range modeling. While sparse attention mechanisms like RingAttention reduce computational costs by restricting attention to local neighborhoods, they suffer from limited receptive fields and lack of adaptability. We present \PiAttention, a periodic sparse Transformer that factorizes attention into ring-local neighborhoods, deterministic $\pi$-stride skips, and an adaptive fusion gate. The periodic structure provides predictable coverage of distant tokens, while the sparse footprint keeps the per-layer complexity linear in context length. We prove that \PiAttention achieves $\mathcal{O}(kL + \pi \log L)$ receptive field growth compared to $\mathcal{O}(kL)$ for RingAttention, where $k$ is the local window size, $\pi$ is the skip period, and $L$ is the sequence length. Extensive experiments on language modeling, retrieval, and vision-language tasks demonstrate that \PiAttention matches or surpasses dense attention quality with 8.3\% lower perplexity than RingAttention while using 50\% fewer GPUs for the same context length. Our detailed ablations and visualizations reveal the importance of periodic skips, adaptive fusion, and head-level sparsity coordination for efficient long-context modeling.
arXiv:2511.13020v1 Announce Type: new Abstract: Hyperspectral imaging (HSI) holds great potential for healthcare due to its rich spectral information. However, acquiring HSI data remains costly and technically demanding. Hyperspectral image reconstruction offers a practical solution by recovering HSI data from accessible modalities, such as RGB. While general domain datasets are abundant, the scarcity of human HSI data limits progress in medical applications. To tackle this, we propose SpectralAdapt, a semi-supervised domain adaptation (SSDA) framework that bridges the domain gap between general and human-centered HSI datasets. To fully exploit limited labels and abundant unlabeled data, we enhance spectral reasoning by introducing Spectral Density Masking (SDM), which adaptively masks RGB channels based on their spectral complexity, encouraging recovery of informative regions from complementary cues during consistency training. Furthermore, we introduce Spectral Endmember Representation Alignment (SERA), which derives physically interpretable endmembers from valuable labeled pixels and employs them as domain-invariant anchors to guide unlabeled predictions, with momentum updates ensuring adaptability and stability. These components are seamlessly integrated into SpectralAdapt, a spectral prior-guided framework that effectively mitigates domain shift, spectral degradation, and data scarcity in HSI reconstruction. Experiments on benchmark datasets demonstrate consistent improvements in spectral fidelity, cross-domain generalization, and training stability, highlighting the promise of SSDA as an efficient solution for hyperspectral imaging in healthcare.
arXiv:2506.03238v2 Announce Type: replace-cross Abstract: Automated interpretation of CT images-particularly localizing and describing abnormal findings across multi-plane and whole-body scans-remains a significant challenge in clinical radiology. This work aims to address this challenge through four key contributions: (i) On taxonomy, we collaborate with senior radiologists to propose a comprehensive hierarchical classification system, with 404 representative abnormal findings across all body regions; (ii) On data, we contribute a dataset containing over 14.5K CT images from multiple planes and all human body regions, and meticulously provide grounding annotations for over 19K abnormalities, each linked to the detailed description and cast into the taxonomy; (iii) On model development, we propose OmniAbnorm-CT, which can automatically ground and describe abnormal findings on multi-plane and whole-body CT images based on text queries, while also allowing flexible interaction through visual prompts; (iv) On evaluation, we establish three representative tasks based on real clinical scenarios, and introduce a clinically grounded metric to assess abnormality descriptions. Through extensive experiments, we show that OmniAbnorm-CT can significantly outperform existing methods in both internal and external validations, and across all the tasks.