Latest

Fresh from the feed

Filter by timeframe and category to zero in on the moves that matter.

Recurrent Autoregressive Diffusion: Global Memory Meets Local Attention
paper
arXiv cs.CV3 days ago

arXiv:2511.12940v1 Announce Type: new Abstract: Recent advancements in video generation have demonstrated the potential of using video diffusion models as world models, with autoregressive generation of infinitely long videos through masked conditioning. However, such models, usually with local full attention, lack effective memory compression and retrieval for long-term generation beyond the window size, leading to issues of forgetting and spatiotemporal inconsistencies. To enhance the retention of historical information within a fixed memory budget, we introduce a recurrent neural network (RNN) into the diffusion transformer framework. Specifically, a diffusion model incorporating LSTM with attention achieves comparable performance to state-of-the-art RNN blocks, such as TTT and Mamba2. Moreover, existing diffusion-RNN approaches often suffer from performance degradation due to training-inference gap or the lack of overlap across windows. To address these limitations, we propose a novel Recurrent Autoregressive Diffusion (RAD) framework, which executes frame-wise autoregression for memory update and retrieval, consistently across training and inference time. Experiments on Memory Maze and Minecraft datasets demonstrate the superiority of RAD for long video generation, highlighting the efficiency of LSTM in sequence modeling.

#ai
Score · 2.80
Structure-Aware Encodings of Argumentation Properties for Clique-width
paper
arXiv cs.AI3 days ago

arXiv:2511.10767v1 Announce Type: new Abstract: Structural measures of graphs, such as treewidth, are central tools in computational complexity resulting in efficient algorithms when exploiting the parameter. It is even known that modern SAT solvers work efficiently on instances of small treewidth. Since these solvers are widely applied, research interests in compact encodings into (Q)SAT for solving and to understand encoding limitations. Even more general is the graph parameter clique-width, which unlike treewidth can be small for dense graphs. Although algorithms are available for clique-width, little is known about encodings. We initiate the quest to understand encoding capabilities with clique-width by considering abstract argumentation, which is a robust framework for reasoning with conflicting arguments. It is based on directed graphs and asks for computationally challenging properties, making it a natural candidate to study computational properties. We design novel reductions from argumentation problems to (Q)SAT. Our reductions linearly preserve the clique-width, resulting in directed decomposition-guided (DDG) reductions. We establish novel results for all argumentation semantics, including counting. Notably, the overhead caused by our DDG reductions cannot be significantly improved under reasonable assumptions.

#ai
#research
Score · 2.80
Potential Outcome Rankings for Counterfactual Decision Making
paper
arXiv cs.AI3 days ago

arXiv:2511.10776v1 Announce Type: new Abstract: Counterfactual decision-making in the face of uncertainty involves selecting the optimal action from several alternatives using causal reasoning. Decision-makers often rank expected potential outcomes (or their corresponding utility and desirability) to compare the preferences of candidate actions. In this paper, we study new counterfactual decision-making rules by introducing two new metrics: the probabilities of potential outcome ranking (PoR) and the probability of achieving the best potential outcome (PoB). PoR reveals the most probable ranking of potential outcomes for an individual, and PoB indicates the action most likely to yield the top-ranked outcome for an individual. We then establish identification theorems and derive bounds for these metrics, and present estimation methods. Finally, we perform numerical experiments to illustrate the finite-sample properties of the estimators and demonstrate their application to a real-world dataset.

#ai
#research
Score · 2.80
From Efficiency to Adaptivity: A Deeper Look at Adaptive Reasoning in Large Language Models
paper
arXiv cs.AI3 days ago

arXiv:2511.10788v1 Announce Type: new Abstract: Recent advances in large language models (LLMs) have made reasoning a central benchmark for evaluating intelligence. While prior surveys focus on efficiency by examining how to shorten reasoning chains or reduce computation, this view overlooks a fundamental challenge: current LLMs apply uniform reasoning strategies regardless of task complexity, generating long traces for trivial problems while failing to extend reasoning for difficult tasks. This survey reframes reasoning through the lens of {adaptivity}: the capability to allocate reasoning effort based on input characteristics such as difficulty and uncertainty. We make three contributions. First, we formalize deductive, inductive, and abductive reasoning within the LLM context, connecting these classical cognitive paradigms with their algorithmic realizations. Second, we formalize adaptive reasoning as a control-augmented policy optimization problem balancing task performance with computational cost, distinguishing learned policies from inference-time control mechanisms. Third, we propose a systematic taxonomy organizing existing methods into training-based approaches that internalize adaptivity through reinforcement learning, supervised fine-tuning, and learned controllers, and training-free approaches that achieve adaptivity through prompt conditioning, feedback-driven halting, and modular composition. This framework clarifies how different mechanisms realize adaptive reasoning in practice and enables systematic comparison across diverse strategies. We conclude by identifying open challenges in self-evaluation, meta-reasoning, and human-aligned reasoning control.

#ai
#llm
Score · 2.80
HyperComplEx: Adaptive Multi-Space Knowledge Graph Embeddings
paper
arXiv cs.AI3 days ago

arXiv:2511.10842v1 Announce Type: new Abstract: Knowledge graphs have emerged as fundamental structures for representing complex relational data across scientific and enterprise domains. However, existing embedding methods face critical limitations when modeling diverse relationship types at scale: Euclidean models struggle with hierarchies, vector space models cannot capture asymmetry, and hyperbolic models fail on symmetric relations. We propose HyperComplEx, a hybrid embedding framework that adaptively combines hyperbolic, complex, and Euclidean spaces via learned attention mechanisms. A relation-specific space weighting strategy dynamically selects optimal geometries for each relation type, while a multi-space consistency loss ensures coherent predictions across spaces. We evaluate HyperComplEx on computer science research knowledge graphs ranging from 1K papers (~25K triples) to 10M papers (~45M triples), demonstrating consistent improvements over state-of-the-art baselines including TransE, RotatE, DistMult, ComplEx, SEPA, and UltraE. Additional tests on standard benchmarks confirm significantly higher results than all baselines. On the 10M-paper dataset, HyperComplEx achieves 0.612 MRR, a 4.8% relative gain over the best baseline, while maintaining efficient training, achieving 85 ms inference per triple. The model scales near-linearly with graph size through adaptive dimension allocation. We release our implementation and dataset family to facilitate reproducible research in scalable knowledge graph embeddings.

#ai
#research
#product
Score · 2.80
T2I-Based Physical-World Appearance Attack against Traffic Sign Recognition Systems in Autonomous Driving
paper
arXiv cs.CV3 days ago

arXiv:2511.12956v1 Announce Type: new Abstract: Traffic Sign Recognition (TSR) systems play a critical role in Autonomous Driving (AD) systems, enabling real-time detection of road signs, such as STOP and speed limit signs. While these systems are increasingly integrated into commercial vehicles, recent research has exposed their vulnerability to physical-world adversarial appearance attacks. In such attacks, carefully crafted visual patterns are misinterpreted by TSR models as legitimate traffic signs, while remaining inconspicuous or benign to human observers. However, existing adversarial appearance attacks suffer from notable limitations. Pixel-level perturbation-based methods often lack stealthiness and tend to overfit to specific surrogate models, resulting in poor transferability to real-world TSR systems. On the other hand, text-to-image (T2I) diffusion model-based approaches demonstrate limited effectiveness and poor generalization to out-of-distribution sign types. In this paper, we present DiffSign, a novel T2I-based appearance attack framework designed to generate physically robust, highly effective, transferable, practical, and stealthy appearance attacks against TSR systems. To overcome the limitations of prior approaches, we propose a carefully designed attack pipeline that integrates CLIP-based loss and masked prompts to improve attack focus and controllability. We also propose two novel style customization methods to guide visual appearance and improve out-of-domain traffic sign attack generalization and attack stealthiness. We conduct extensive evaluations of DiffSign under varied real-world conditions, including different distances, angles, light conditions, and sign categories. Our method achieves an average physical-world attack success rate of 83.3%, leveraging DiffSign's high effectiveness in attack transferability.

#ai
#research
Score · 2.80
Enhancing Demand-Oriented Regionalization with Agentic AI and Local Heterogeneous Data for Adaptation Planning
paper
arXiv cs.AI3 days ago

arXiv:2511.10857v1 Announce Type: new Abstract: Conventional planning units or urban regions, such as census tracts, zip codes, or neighborhoods, often do not capture the specific demands of local communities and lack the flexibility to implement effective strategies for hazard prevention or response. To support the creation of dynamic planning units, we introduce a planning support system with agentic AI that enables users to generate demand-oriented regions for disaster planning, integrating the human-in-the-loop principle for transparency and adaptability. The platform is built on a representative initialized spatially constrained self-organizing map (RepSC-SOM), extending traditional SOM with adaptive geographic filtering and region-growing refinement, while AI agents can reason, plan, and act to guide the process by suggesting input features, guiding spatial constraints, and supporting interactive exploration. We demonstrate the capabilities of the platform through a case study on the flooding-related risk in Jacksonville, Florida, showing how it allows users to explore, generate, and evaluate regionalization interactively, combining computational rigor with user-driven decision making.

#ai
#research
Score · 2.80
LLM enhanced graph inference for long-term disease progression modelling
paper
arXiv cs.AI3 days ago

arXiv:2511.10890v1 Announce Type: new Abstract: Understanding the interactions between biomarkers among brain regions during neurodegenerative disease is essential for unravelling the mechanisms underlying disease progression. For example, pathophysiological models of Alzheimer's Disease (AD) typically describe how variables, such as regional levels of toxic proteins, interact spatiotemporally within a dynamical system driven by an underlying biological substrate, often based on brain connectivity. However, current methods grossly oversimplify the complex relationship between brain connectivity by assuming a single-modality brain connectome as the disease-spreading substrate. This leads to inaccurate predictions of pathology spread, especially during the long-term progression period. Meanhwile, other methods of learning such a graph in a purely data-driven way face the identifiability issue due to lack of proper constraint. We thus present a novel framework that uses Large Language Models (LLMs) as expert guides on the interaction of regional variables to enhance learning of disease progression from irregularly sampled longitudinal patient data. By leveraging LLMs' ability to synthesize multi-modal relationships and incorporate diverse disease-driving mechanisms, our method simultaneously optimizes 1) the construction of long-term disease trajectories from individual-level observations and 2) the biologically-constrained graph structure that captures interactions among brain regions with better identifiability. We demonstrate the new approach by estimating the pathology propagation using tau-PET imaging data from an Alzheimer's disease cohort. The new framework demonstrates superior prediction accuracy and interpretability compared to traditional approaches while revealing additional disease-driving factors beyond conventional connectivity measures.

#ai
#llm
Score · 2.80
Multi-Agent Legal Verifier Systems for Data Transfer Planning
paper
arXiv cs.AI3 days ago

arXiv:2511.10925v1 Announce Type: new Abstract: Legal compliance in AI-driven data transfer planning is becoming increasingly critical under stringent privacy regulations such as the Japanese Act on the Protection of Personal Information (APPI). We propose a multi-agent legal verifier that decomposes compliance checking into specialized agents for statutory interpretation, business context evaluation, and risk assessment, coordinated through a structured synthesis protocol. Evaluated on a stratified dataset of 200 Amended APPI Article 16 cases with clearly defined ground truth labels and multiple performance metrics, the system achieves 72% accuracy, which is 21 percentage points higher than a single-agent baseline, including 90% accuracy on clear compliance cases (vs. 16% for the baseline) while maintaining perfect detection of clear violations. While challenges remain in ambiguous scenarios, these results show that domain specialization and coordinated reasoning can meaningfully improve legal AI performance, providing a scalable and regulation-aware framework for trustworthy and interpretable automated compliance verification.

#ai
Score · 2.80
EndoSight AI: Deep Learning-Driven Real-Time Gastrointestinal Polyp Detection and Segmentation for Enhanced Endoscopic Diagnostics
paper
arXiv cs.CV3 days ago

arXiv:2511.12962v1 Announce Type: new Abstract: Precise and real-time detection of gastrointestinal polyps during endoscopic procedures is crucial for early diagnosis and prevention of colorectal cancer. This work presents EndoSight AI, a deep learning architecture developed and evaluated independently to enable accurate polyp localization and detailed boundary delineation. Leveraging the publicly available Hyper-Kvasir dataset, the system achieves a mean Average Precision (mAP) of 88.3% for polyp detection and a Dice coefficient of up to 69% for segmentation, alongside real-time inference speeds exceeding 35 frames per second on GPU hardware. The training incorporates clinically relevant performance metrics and a novel thermal-aware procedure to ensure model robustness and efficiency. This integrated AI solution is designed for seamless deployment in endoscopy workflows, promising to advance diagnostic accuracy and clinical decision-making in gastrointestinal healthcare.

#ai
Score · 2.80
AI Agent-Driven Framework for Automated Product Knowledge Graph Construction in E-Commerce
paper
arXiv cs.AI3 days ago

arXiv:2511.11017v1 Announce Type: new Abstract: The rapid expansion of e-commerce platforms generates vast amounts of unstructured product data, creating significant challenges for information retrieval, recommendation systems, and data analytics. Knowledge Graphs (KGs) offer a structured, interpretable format to organize such data, yet constructing product-specific KGs remains a complex and manual process. This paper introduces a fully automated, AI agent-driven framework for constructing product knowledge graphs directly from unstructured product descriptions. Leveraging Large Language Models (LLMs), our method operates in three stages using dedicated agents: ontology creation and expansion, ontology refinement, and knowledge graph population. This agent-based approach ensures semantic coherence, scalability, and high-quality output without relying on predefined schemas or handcrafted extraction rules. We evaluate the system on a real-world dataset of air conditioner product descriptions, demonstrating strong performance in both ontology generation and KG population. The framework achieves over 97\% property coverage and minimal redundancy, validating its effectiveness and practical applicability. Our work highlights the potential of LLMs to automate structured knowledge extraction in retail, providing a scalable path toward intelligent product data integration and utilization.

#ai
#llm
#research
#product
Score · 2.80
Faster Symmetry Breaking Constraints for Abstract Structures
paper
arXiv cs.AI3 days ago

arXiv:2511.11029v1 Announce Type: new Abstract: In constraint programming and related paradigms, a modeller specifies their problem in a modelling language for a solver to search and return its solution(s). Using high-level modelling languages such as Essence, a modeller may express their problems in terms of abstract structures. These are structures not natively supported by the solvers, and so they have to be transformed into or represented as other structures before solving. For example, nested sets are abstract structures, and they can be represented as matrices in constraint solvers. Many problems contain symmetries and one very common and highly successful technique used in constraint programming is to "break" symmetries, to avoid searching for symmetric solutions. This can speed up the solving process by many orders of magnitude. Most of these symmetry-breaking techniques involve placing some kind of ordering for the variables of the problem, and picking a particular member under the symmetries, usually the smallest. Unfortunately, applying this technique to abstract variables produces a very large number of complex constraints that perform poorly in practice. In this paper, we demonstrate a new incomplete method of breaking the symmetries of abstract structures by better exploiting their representations. We apply the method in breaking the symmetries arising from indistinguishable objects, a commonly occurring type of symmetry, and show that our method is faster than the previous methods proposed in (Akg\"un et al. 2025).

#ai
#research
Score · 2.80
Key Decision-Makers in Multi-Agent Debates: Who Holds the Power?
paper
arXiv cs.AI3 days ago

arXiv:2511.11040v1 Announce Type: new Abstract: Recent studies on LLM agent scaling have highlighted the potential of Multi-Agent Debate (MAD) to enhance reasoning abilities. However, the critical aspect of role allocation strategies remains underexplored. In this study, we demonstrate that allocating roles with differing viewpoints to specific positions significantly impacts MAD's performance in reasoning tasks. Specifically, we find a novel role allocation strategy, "Truth Last", which can improve MAD performance by up to 22% in reasoning tasks. To address the issue of unknown truth in practical applications, we propose the Multi-Agent Debate Consistency (MADC) strategy, which systematically simulates and optimizes its core mechanisms. MADC incorporates path consistency to assess agreement among independent roles, simulating the role with the highest consistency score as the truth. We validated MADC across a range of LLMs (9 models), including the DeepSeek-R1 Distilled Models, on challenging reasoning tasks. MADC consistently demonstrated advanced performance, effectively overcoming MAD's performance bottlenecks and providing a crucial pathway for further improvements in LLM agent scaling.

#ai
#llm
#research
Score · 2.80
CalibrateMix: Guided-Mixup Calibration of Image Semi-Supervised Models
paper
arXiv cs.CV3 days ago

arXiv:2511.12964v1 Announce Type: new Abstract: Semi-supervised learning (SSL) has demonstrated high performance in image classification tasks by effectively utilizing both labeled and unlabeled data. However, existing SSL methods often suffer from poor calibration, with models yielding overconfident predictions that misrepresent actual prediction likelihoods. Recently, neural networks trained with {\tt mixup} that linearly interpolates random examples from the training set have shown better calibration in supervised settings. However, calibration of neural models remains under-explored in semi-supervised settings. Although effective in supervised model calibration, random mixup of pseudolabels in SSL presents challenges due to the overconfidence and unreliability of pseudolabels. In this work, we introduce CalibrateMix, a targeted mixup-based approach that aims to improve the calibration of SSL models while maintaining or even improving their classification accuracy. Our method leverages training dynamics of labeled and unlabeled samples to identify ``easy-to-learn'' and ``hard-to-learn'' samples, which in turn are utilized in a targeted mixup of easy and hard samples. Experimental results across several benchmark image datasets show that our method achieves lower expected calibration error (ECE) and superior accuracy compared to existing SSL approaches.

#ai
Score · 2.80
GrOCE:Graph-Guided Online Concept Erasure for Text-to-Image Diffusion Models
paper
arXiv cs.CV3 days ago

arXiv:2511.12968v1 Announce Type: new Abstract: Concept erasure aims to remove harmful, inappropriate, or copyrighted content from text-to-image diffusion models while preserving non-target semantics. However, existing methods either rely on costly fine-tuning or apply coarse semantic separation, often degrading unrelated concepts and lacking adaptability to evolving concept sets. To alleviate this issue, we propose Graph-Guided Online Concept Erasure (GrOCE), a training-free framework that performs precise and adaptive concept removal through graph-based semantic reasoning. GrOCE models concepts and their interrelations as a dynamic semantic graph, enabling principled reasoning over dependencies and fine-grained isolation of undesired content. It comprises three components: (1) Dynamic Topological Graph Construction for incremental graph building, (2) Adaptive Cluster Identification for multi-hop traversal with similarity-decay scoring, and (3) Selective Edge Severing for targeted edge removal while preserving global semantics. Extensive experiments demonstrate that GrOCE achieves state-of-the-art performance on Concept Similarity (CS) and Fr\'echet Inception Distance (FID) metrics, offering efficient, accurate, and stable concept erasure without retraining.

#ai
Score · 2.80
Satisficing and Optimal Generalised Planning via Goal Regression (Extended Version)
paper
arXiv cs.AI3 days ago

arXiv:2511.11095v1 Announce Type: new Abstract: Generalised planning (GP) refers to the task of synthesising programs that solve families of related planning problems. We introduce a novel, yet simple method for GP: given a set of training problems, for each problem, compute an optimal plan for each goal atom in some order, perform goal regression on the resulting plans, and lift the corresponding outputs to obtain a set of first-order $\textit{Condition} \rightarrow \textit{Actions}$ rules. The rules collectively constitute a generalised plan that can be executed as is or alternatively be used to prune the planning search space. We formalise and prove the conditions under which our method is guaranteed to learn valid generalised plans and state space pruning axioms for search. Experiments demonstrate significant improvements over state-of-the-art (generalised) planners with respect to the 3 metrics of synthesis cost, planning coverage, and solution quality on various classical and numeric planning domains.

#ai
Score · 2.80
GGBench: A Geometric Generative Reasoning Benchmark for Unified Multimodal Models
paper
arXiv cs.AI3 days ago

arXiv:2511.11134v1 Announce Type: new Abstract: The advent of Unified Multimodal Models (UMMs) signals a paradigm shift in artificial intelligence, moving from passive perception to active, cross-modal generation. Despite their unprecedented ability to synthesize information, a critical gap persists in evaluation: existing benchmarks primarily assess discriminative understanding or unconstrained image generation separately, failing to measure the integrated cognitive process of generative reasoning. To bridge this gap, we propose that geometric construction provides an ideal testbed as it inherently demands a fusion of language comprehension and precise visual generation. We introduce GGBench, a benchmark designed specifically to evaluate geometric generative reasoning. It provides a comprehensive framework for systematically diagnosing a model's ability to not only understand and reason but to actively construct a solution, thereby setting a more rigorous standard for the next generation of intelligent systems. Project website: https://opendatalab-raiser.github.io/GGBench/.

#ai
#open_source
Score · 2.80
Multi-agent Undercover Gaming: Hallucination Removal via Counterfactual Test for Multimodal Reasoning
paper
arXiv cs.AI3 days ago

arXiv:2511.11182v1 Announce Type: new Abstract: Hallucination continues to pose a major obstacle in the reasoning capabilities of large language models (LLMs). Although the Multi-Agent Debate (MAD) paradigm offers a promising solution by promoting consensus among multiple agents to enhance reliability, it relies on the unrealistic assumption that all debaters are rational and reflective, which is a condition that may not hold when agents themselves are prone to hallucinations. To address this gap, we introduce the Multi-agent Undercover Gaming (MUG) protocol, inspired by social deduction games like "Who is Undercover?". MUG reframes MAD as a process of detecting "undercover" agents (those suffering from hallucinations) by employing multimodal counterfactual tests. Specifically, we modify reference images to introduce counterfactual evidence and observe whether agents can accurately identify these changes, providing ground-truth for identifying hallucinating agents and enabling robust, crowd-powered multimodal reasoning. MUG advances MAD protocols along three key dimensions: (1) enabling factual verification beyond statistical consensus through counterfactual testing; (2) introducing cross-evidence reasoning via dynamically modified evidence sources instead of relying on static inputs; and (3) fostering active reasoning, where agents engage in probing discussions rather than passively answering questions. Collectively, these innovations offer a more reliable and effective framework for multimodal reasoning in LLMs. The source code can be accessed at https://github.com/YongLD/MUG.git.

#llm
#open_source
Score · 2.80
HiFusion: Hierarchical Intra-Spot Alignment and Regional Context Fusion for Spatial Gene Expression Prediction from Histopathology
paper
arXiv cs.CV3 days ago

arXiv:2511.12969v1 Announce Type: new Abstract: Spatial transcriptomics (ST) bridges gene expression and tissue morphology but faces clinical adoption barriers due to technical complexity and prohibitive costs. While computational methods predict gene expression from H&E-stained whole-slide images (WSIs), existing approaches often fail to capture the intricate biological heterogeneity within spots and are susceptible to morphological noise when integrating contextual information from surrounding tissue. To overcome these limitations, we propose HiFusion, a novel deep learning framework that integrates two complementary components. First, we introduce the Hierarchical Intra-Spot Modeling module that extracts fine-grained morphological representations through multi-resolution sub-patch decomposition, guided by a feature alignment loss to ensure semantic consistency across scales. Concurrently, we present the Context-aware Cross-scale Fusion module, which employs cross-attention to selectively incorporate biologically relevant regional context, thereby enhancing representational capacity. This architecture enables comprehensive modeling of both cellular-level features and tissue microenvironmental cues, which are essential for accurate gene expression prediction. Extensive experiments on two benchmark ST datasets demonstrate that HiFusion achieves state-of-the-art performance across both 2D slide-wise cross-validation and more challenging 3D sample-specific scenarios. These results underscore HiFusion's potential as a robust, accurate, and scalable solution for ST inference from routine histopathology.

#ai
Score · 2.80
MCAQ-YOLO: Morphological Complexity-Aware Quantization for Efficient Object Detection with Curriculum Learning
paper
arXiv cs.CV3 days ago

arXiv:2511.12976v1 Announce Type: new Abstract: Most neural network quantization methods apply uniform bit precision across spatial regions, ignoring the heterogeneous structural and textural complexity of visual data. This paper introduces MCAQ-YOLO, a morphological complexity-aware quantization framework for object detection. The framework employs five morphological metrics - fractal dimension, texture entropy, gradient variance, edge density, and contour complexity - to characterize local visual morphology and guide spatially adaptive bit allocation. By correlating these metrics with quantization sensitivity, MCAQ-YOLO dynamically adjusts bit precision according to spatial complexity. In addition, a curriculum-based quantization-aware training scheme progressively increases quantization difficulty to stabilize optimization and accelerate convergence. Experimental results demonstrate a strong correlation between morphological complexity and quantization sensitivity and show that MCAQ-YOLO achieves superior detection accuracy and convergence efficiency compared with uniform quantization. On a safety equipment dataset, MCAQ-YOLO attains 85.6 percent mAP@0.5 with an average of 4.2 bits and a 7.6x compression ratio, yielding 3.5 percentage points higher mAP than uniform 4-bit quantization while introducing only 1.8 ms of additional runtime overhead per image. Cross-dataset validation on COCO and Pascal VOC further confirms consistent performance gains, indicating that morphology-driven spatial quantization can enhance efficiency and robustness for computationally constrained, safety-critical visual recognition tasks.

#ai
#research
Score · 2.80
Page 69 of 93