Fresh from the feed
Filter by timeframe and category to zero in on the moves that matter.
arXiv:2511.12928v1 Announce Type: new Abstract: Can multi-modal large language models (MLLMs) truly understand what they can see? Extending Searle's Chinese Room into the multi-modal domain, this paper proposes the Visual Room argument: MLLMs may describe every visual detail precisely yet fail to comprehend the underlying emotions and intentions, namely seeing is not understanding. Building on this, we introduce \textit{Visual Room} 2.0, a hierarchical benchmark for evaluating perception-cognition alignment of MLLMs. We model human perceptive and cognitive processes across three levels: low, middle, and high, covering 17 representative tasks. The perception component ranges from attribute recognition to scene understanding, while the cognition component extends from textual entailment to causal and social reasoning. The dataset contains 350 multi-modal samples, each with six progressive questions (2,100 in total) spanning perception to cognition. Evaluating 10 state-of-the-art (SoTA) MLLMs, we highlight three key findings: (1) MLLMs exhibit stronger perceptual competence than cognitive ability (8.0\%$\uparrow$); (2) cognition appears not causally dependent on perception-based reasoning; and (3) cognition scales with model size, but perception does not consistently improve with larger variants. This work operationalizes Seeing $\ne$ Understanding as a testable hypothesis, offering a new paradigm from perceptual processing to cognitive reasoning in MLLMs. Our dataset is available at https://huggingface.co/datasets/LHK2003/PCBench.
arXiv:2511.13029v1 Announce Type: new Abstract: Existing language model evaluations primarily measure general capabilities, yet reliable use of these models across a range of domains demands factual accuracy and recognition of knowledge gaps. We introduce AA-Omniscience, a benchmark designed to measure both factual recall and knowledge calibration across 6,000 questions. Questions are derived from authoritative academic and industry sources, and cover 42 economically relevant topics within six different domains. The evaluation measures a model's Omniscience Index, a bounded metric (-100 to 100) measuring factual recall that jointly penalizes hallucinations and rewards abstention when uncertain, with 0 equating to a model that answers questions correctly as much as it does incorrectly. Among evaluated models, Claude 4.1 Opus attains the highest score (4.8), making it one of only three models to score above zero. These results reveal persistent factuality and calibration weaknesses across frontier models. Performance also varies by domain, with the models from three different research labs leading across the six domains. This performance variability suggests models should be chosen according to the demands of the use case rather than general performance for tasks where knowledge is important.
arXiv:2511.12930v1 Announce Type: cross Abstract: 3D Gaussian Splatting (3DGS) rendering in real-time on resource-constrained devices is essential for delivering immersive augmented and virtual reality (AR/VR) experiences. However, existing solutions struggle to achieve high frame rates, especially for high-resolution rendering. Our analysis identifies the sorting stage in the 3DGS rendering pipeline as the major bottleneck due to its high memory bandwidth demand. This paper presents Neo, which introduces a reuse-and-update sorting algorithm that exploits temporal redundancy in Gaussian ordering across consecutive frames, and devises a hardware accelerator optimized for this algorithm. By efficiently tracking and updating Gaussian depth ordering instead of re-sorting from scratch, Neo significantly reduces redundant computations and memory bandwidth pressure. Experimental results show that Neo achieves up to 10.0x and 5.6x higher throughput than state-of-the-art edge GPU and ASIC solution, respectively, while reducing DRAM traffic by 94.5% and 81.3%. These improvements make high-quality and low-latency on-device 3D rendering more practical.
arXiv:2511.12893v1 Announce Type: new Abstract: Visual Autoregressive (VAR) models enable efficient image generation via next-scale prediction but face escalating computational costs as sequence length grows. Existing static pruning methods degrade performance by permanently removing weights or tokens, disrupting pretrained dependencies. To address this, we propose ActVAR, a dynamic activation framework that introduces dual sparsity across model weights and token sequences to enhance efficiency without sacrificing capacity. ActVAR decomposes feedforward networks (FFNs) into lightweight expert sub-networks and employs a learnable router to dynamically select token-specific expert subsets based on content. Simultaneously, a gated token selector identifies high-update-potential tokens for computation while reconstructing unselected tokens to preserve global context and sequence alignment. Training employs a two-stage knowledge distillation strategy, where the original VAR model supervises the learning of routing and gating policies to align with pretrained knowledge. Experiments on the ImageNet $256\times 256$ benchmark demonstrate that ActVAR achieves up to $21.2\%$ FLOPs reduction with minimal performance degradation.
arXiv:2511.12895v1 Announce Type: new Abstract: High Dynamic Range (HDR) imaging is essential for professional digital media creation, e.g., filmmaking, virtual production, and photorealistic rendering. However, 3D scene reconstruction has primarily focused on Low Dynamic Range (LDR) data, limiting its applicability to professional workflows. Existing approaches that reconstruct HDR scenes from LDR observations rely on multi-exposure fusion or inverse tone-mapping, which increase capture complexity and depend on synthetic supervision. With the recent emergence of cameras that directly capture native HDR data in a single exposure, we present the first method for 3D scene reconstruction that directly models native HDR observations. We propose {\bf Native High dynamic range 3D Gaussian Splatting (NH-3DGS)}, which preserves the full dynamic range throughout the reconstruction pipeline. Our key technical contribution is a novel luminance-chromaticity decomposition of the color representation that enables direct optimization from native HDR camera data. We demonstrate on both synthetic and real multi-view HDR datasets that NH-3DGS significantly outperforms existing methods in reconstruction quality and dynamic range preservation, enabling professional-grade 3D reconstruction directly from native HDR captures. Code and datasets will be made available.
arXiv:2511.12899v1 Announce Type: new Abstract: Due to the diversity of brain anatomy and the scarcity of annotated data, supervised anomaly detection for brain MRI remains challenging, driving the development of unsupervised anomaly detection (UAD) approaches. Current UAD methods typically utilize artificially generated noise perturbations on healthy MRIs to train generative models for normal anatomy reconstruction, enabling anomaly detection via residual mapping. However, such simulated anomalies lack the biophysical fidelity and morphological complexity characteristic of true clinical lesions. To advance UAD in brain MRI, we conduct the first systematic frequency-domain analysis of pathological signatures, revealing two key properties: (1) anomalies exhibit unique frequency patterns distinguishable from normal anatomy, and (2) low-frequency signals maintain consistent representations across healthy scans. These insights motivate our Frequency-Decomposition Preprocessing (FDP) framework, the first UAD method to leverage frequency-domain reconstruction for simultaneous pathology suppression and anatomical preservation. FDP can integrate seamlessly with existing anomaly simulation techniques, consistently enhancing detection performance across diverse architectures while maintaining diagnostic fidelity. Experimental results demonstrate that FDP consistently improves anomaly detection performance when integrated with existing methods. Notably, FDP achieves a 17.63% increase in DICE score with LDM while maintaining robust improvements across multiple baselines. The code is available at https://github.com/ls1rius/MRI_FDP.
arXiv:2511.12908v1 Announce Type: new Abstract: Sports video understanding presents unique challenges, requiring models to perceive high-speed dynamics, comprehend complex rules, and reason over long temporal contexts. While Multimodal Large Language Models (MLLMs) have shown promise in genral domains, the current state of research in sports remains narrowly focused: existing approaches are either single-sport centric, limited to specific tasks, or rely on training-free paradigms that lack robust, learned reasoning process. To address this gap, we introduce DeepSport, the first end-to-end trained MLLM framework designed for multi-task, multi-sport video understanding. DeepSport shifts the paradigm from passive frame processing to active, iterative reasoning, empowering the model to ``think with videos'' by dynamically interrogating content via a specialized frame-extraction tool. To enable this, we propose a data distillation pipeline that synthesizes high-quality Chain-of-Thought (CoT) trajectories from 10 diverse data source, creating a unified resource of 78k training data. We then employ a two-stage training strategy, Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL) with a novel gated tool-use reward, to optimize the model's reasoning process. Extensive experiments on the testing benchmark of 6.7k questions demonstrate that DeepSport achieves state-of-the-art performance, significantly outperforming baselines of both proprietary model and open-source models. Our work establishes a new foundation for domain-specific video reasoning to address the complexities of diverse sports.
arXiv:2511.13654v1 Announce Type: cross Abstract: In this paper, we present the first detailed analysis of how optimization hyperparameters -- such as learning rate, weight decay, momentum, and batch size -- influence robustness against both transfer-based and query-based attacks. Supported by theory and experiments, our study spans a variety of practical deployment settings, including centralized training, ensemble learning, and distributed training. We uncover a striking dichotomy: for transfer-based attacks, decreasing the learning rate significantly enhances robustness by up to $64\%$. In contrast, for query-based attacks, increasing the learning rate consistently leads to improved robustness by up to $28\%$ across various settings and data distributions. Leveraging these findings, we explore -- for the first time -- the optimization hyperparameter design space to jointly enhance robustness against both transfer-based and query-based attacks. Our results reveal that distributed models benefit the most from hyperparameter tuning, achieving a remarkable tradeoff by simultaneously mitigating both attack types more effectively than other training setups.
arXiv:2511.12909v1 Announce Type: new Abstract: Deep learning-based 3D anomaly detection methods have demonstrated significant potential in industrial manufacturing. However, many approaches are specifically designed for anomaly detection tasks, which limits their generalizability to other 3D understanding tasks. In contrast, self-supervised point cloud models aim for general-purpose representation learning, yet our investigation reveals that these classical models are suboptimal at anomaly detection under the unified fine-tuning paradigm. This motivates us to develop a more generalizable 3D model that can effectively detect anomalies without relying on task-specific designs. Interestingly, we find that using only the curvature of each point as its anomaly score already outperforms several classical self-supervised and dedicated anomaly detection models, highlighting the critical role of curvature in 3D anomaly detection. In this paper, we propose a Curvature-Augmented Self-supervised Learning (CASL) framework based on a reconstruction paradigm. Built upon the classical U-Net architecture, our approach introduces multi-scale curvature prompts to guide the decoder in predicting the spatial coordinates of each point. Without relying on any dedicated anomaly detection mechanisms, it achieves leading detection performance through straightforward anomaly classification fine-tuning. Moreover, the learned representations generalize well to standard 3D understanding tasks such as point cloud classification. The code is available at https://github.com/zyh16143998882/CASL.
arXiv:2511.12917v1 Announce Type: new Abstract: Multimodal Large Language Models (MLLMs) have played an increasingly important role in multimodal intelligence. However, the existing fine-tuning methods often ignore cross-modal heterogeneity, limiting their full potential. In this work, we propose a novel fine-tuning strategy by injecting beneficial random noise, which outperforms previous methods and even surpasses full fine-tuning, with minimal additional parameters. The proposed Multimodal Noise Generator (MuNG) enables efficient modality fine-tuning by injecting customized noise into the frozen MLLMs. Specifically, we reformulate the reasoning process of MLLMs from a variational inference perspective, upon which we design a multimodal noise generator that dynamically analyzes cross-modal relationships in image-text pairs to generate task-adaptive beneficial noise. Injecting this type of noise into the MLLMs effectively suppresses irrelevant semantic components, leading to significantly improved cross-modal representation alignment and enhanced performance on downstream tasks. Experiments on two mainstream MLLMs, QwenVL and LLaVA, demonstrate that our method surpasses full-parameter fine-tuning and other existing fine-tuning approaches, while requiring adjustments to only about $1\sim2\%$ additional parameters. The relevant code is uploaded in the supplementary.
arXiv:2511.12919v1 Announce Type: new Abstract: Object 6D pose estimation, a crucial task for robotics and augmented reality applications, becomes particularly challenging when dealing with novel objects whose 3D models are not readily available. To reduce dependency on 3D models, recent studies have explored one-reference-based pose estimation, which requires only a single reference view instead of a complete 3D model. However, existing methods that rely on real-valued coordinate regression suffer from limited global consistency due to the local nature of convolutional architectures and face challenges in symmetric or occluded scenarios owing to a lack of uncertainty modeling. We present CoordAR, a novel autoregressive framework for one-reference 6D pose estimation of unseen objects. CoordAR formulates 3D-3D correspondences between the reference and query views as a map of discrete tokens, which is obtained in an autoregressive and probabilistic manner. To enable accurate correspondence regression, CoordAR introduces 1) a novel coordinate map tokenization that enables probabilistic prediction over discretized 3D space; 2) a modality-decoupled encoding strategy that separately encodes RGB appearance and coordinate cues; and 3) an autoregressive transformer decoder conditioned on both position-aligned query features and the partially generated token sequence. With these novel mechanisms, CoordAR significantly outperforms existing methods on multiple benchmarks and demonstrates strong robustness to symmetry, occlusion, and other challenges in real-world tests.
arXiv:2511.12921v1 Announce Type: new Abstract: Cinematic storytelling is profoundly shaped by the artful manipulation of photographic elements such as depth of field and exposure. These effects are crucial in conveying mood and creating aesthetic appeal. However, controlling these effects in generative video models remains highly challenging, as most existing methods are restricted to camera motion control. In this paper, we propose CineCtrl, the first video cinematic editing framework that provides fine control over professional camera parameters (e.g., bokeh, shutter speed). We introduce a decoupled cross-attention mechanism to disentangle camera motion from photographic inputs, allowing fine-grained, independent control without compromising scene consistency. To overcome the shortage of training data, we develop a comprehensive data generation strategy that leverages simulated photographic effects with a dedicated real-world collection pipeline, enabling the construction of a large-scale dataset for robust model training. Extensive experiments demonstrate that our model generates high-fidelity videos with precisely controlled, user-specified photographic camera effects.
arXiv:2511.12932v1 Announce Type: new Abstract: With the rapid advancement of intelligent transportation systems, text-driven image generation and editing techniques have demonstrated significant potential in providing rich, controllable visual scene data for applications such as traffic monitoring and autonomous driving. However, several challenges remain, including insufficient semantic richness of generated traffic elements, limited camera viewpoints, low visual fidelity of synthesized images, and poor alignment between textual descriptions and generated content. To address these issues, we propose a unified text-driven framework for both image generation and editing, leveraging a controllable mask mechanism to seamlessly integrate the two tasks. Furthermore, we incorporate both vehicle-side and roadside multi-view data to enhance the geometric diversity of traffic scenes. Our training strategy follows a two-stage paradigm: first, we perform conceptual learning using large-scale coarse-grained text-image data; then, we fine-tune with fine-grained descriptive data to enhance text-image alignment and detail quality. Additionally, we introduce a mask-region-weighted loss that dynamically emphasizes small yet critical regions during training, thereby substantially enhancing the generation fidelity of small-scale traffic elements. Extensive experiments demonstrate that our method achieves leading performance in text-based image generation and editing within traffic scenes.
PFAvatar: Pose-Fusion 3D Personalized Avatar Reconstruction from Real-World Outfit-of-the-Day Photos
arXiv:2511.12935v1 Announce Type: new Abstract: We propose PFAvatar (Pose-Fusion Avatar), a new method that reconstructs high-quality 3D avatars from ``Outfit of the Day'' (OOTD) photos, which exhibit diverse poses, occlusions, and complex backgrounds. Our method consists of two stages: (1) fine-tuning a pose-aware diffusion model from few-shot OOTD examples and (2) distilling a 3D avatar represented by a neural radiance field (NeRF). In the first stage, unlike previous methods that segment images into assets (e.g., garments, accessories) for 3D assembly, which is prone to inconsistency, we avoid decomposition and directly model the full-body appearance. By integrating a pre-trained ControlNet for pose estimation and a novel Condition Prior Preservation Loss (CPPL), our method enables end-to-end learning of fine details while mitigating language drift in few-shot training. Our method completes personalization in just 5 minutes, achieving a 48$\times$ speed-up compared to previous approaches. In the second stage, we introduce a NeRF-based avatar representation optimized by canonical SMPL-X space sampling and Multi-Resolution 3D-SDS. Compared to mesh-based representations that suffer from resolution-dependent discretization and erroneous occluded geometry, our continuous radiance field can preserve high-frequency textures (e.g., hair) and handle occlusions correctly through transmittance. Experiments demonstrate that PFAvatar outperforms state-of-the-art methods in terms of reconstruction fidelity, detail preservation, and robustness to occlusions/truncations, advancing practical 3D avatar generation from real-world OOTD albums. In addition, the reconstructed 3D avatar supports downstream applications such as virtual try-on, animation, and human video reenactment, further demonstrating the versatility and practical value of our approach.
arXiv:2511.12938v1 Announce Type: new Abstract: Existing industrial anomaly detection methods mainly determine whether an anomaly is present. However, real-world applications also require discovering and classifying multiple anomaly types. Since industrial anomalies are semantically subtle and current methods do not sufficiently exploit image priors, direct clustering approaches often perform poorly. To address these challenges, we propose ProtoAnomalyNCD, a prototype-learning-based framework for discovering unseen anomaly classes of multiple types that can be integrated with various anomaly detection methods. First, to suppress background clutter, we leverage Grounded SAM with text prompts to localize object regions as priors for the anomaly classification network. Next, because anomalies usually appear as subtle and fine-grained patterns on the product, we introduce an Anomaly-Map-Guided Attention block. Within this block, we design a Region Guidance Factor that helps the attention module distinguish among background, object regions, and anomalous regions. By using both localized product regions and anomaly maps as priors, the module enhances anomalous features while suppressing background noise and preserving normal features for contrastive learning. Finally, under a unified prototype-learning framework, ProtoAnomalyNCD discovers and clusters unseen anomaly classes while simultaneously enabling multi-type anomaly classification. We further extend our method to detect unseen outliers, achieving task-level unification. Our method outperforms state-of-the-art approaches on the MVTec AD, MTD, and Real-IAD datasets.
arXiv:2404.16000v2 Announce Type: replace Abstract: While the field of medical image analysis has undergone a transformative shift with the integration of machine learning techniques, the main challenge of these techniques is often the scarcity of large, diverse, and well-annotated datasets. Medical images vary in format, size, and other parameters and therefore require extensive preprocessing and standardization, for usage in machine learning. Addressing these challenges, we introduce the Medical Imaging Meta-Dataset (MedIMeta), a novel multi-domain, multi-task meta-dataset. MedIMeta contains 19 medical imaging datasets spanning 10 different domains and encompassing 54 distinct medical tasks, all of which are standardized to the same format and readily usable in PyTorch or other ML frameworks. We perform a technical validation of MedIMeta, demonstrating its utility through fully supervised and cross-domain few-shot learning baselines.
arXiv:2511.12939v1 Announce Type: new Abstract: Reconstructing high dynamic range (HDR) images from low dynamic range (LDR) bursts plays an essential role in the computational photography. Impressive progress has been achieved by learning-based algorithms which require LDR-HDR image pairs. However, these pairs are hard to obtain, which motivates researchers to delve into the problem of annotation-efficient HDR image reconstructing: how to achieve comparable performance with limited HDR ground truths (GTs). This work attempts to address this problem from the view of semi-supervised learning where a teacher model generates pseudo HDR GTs for the LDR samples without GTs and a student model learns from pseudo GTs. Nevertheless, the confirmation bias, i.e., the student may learn from the artifacts in pseudo HDR GTs, presents an impediment. To remove this impediment, an uncertainty-based masking process is proposed to discard unreliable parts of pseudo GTs at both pixel and patch levels, then the trusted areas can be learned from by the student. With this novel masking process, our semi-supervised HDR reconstructing method not only outperforms previous annotation-efficient algorithms, but also achieves comparable performance with up-to-date fully-supervised methods by using only 6.7% HDR GTs.
arXiv:2511.10705v1 Announce Type: new Abstract: Graphical User Interface (GUI) task automation constitutes a critical frontier in artificial intelligence research. While effective GUI agents synergistically integrate planning and grounding capabilities, current methodologies exhibit two fundamental limitations: (1) insufficient exploitation of cross-model synergies, and (2) over-reliance on synthetic data generation without sufficient utilization. To address these challenges, we propose Co-EPG, a self-iterative training framework for Co-Evolution of Planning and Grounding. Co-EPG establishes an iterative positive feedback loop: through this loop, the planning model explores superior strategies under grounding-based reward guidance via Group Relative Policy Optimization (GRPO), generating diverse data to optimize the grounding model. Concurrently, the optimized Grounding model provides more effective rewards for subsequent GRPO training of the planning model, fostering continuous improvement. Co-EPG thus enables iterative enhancement of agent capabilities through self-play optimization and training data distillation. On the Multimodal-Mind2Web and AndroidControl benchmarks, our framework outperforms existing state-of-the-art methods after just three iterations without requiring external data. The agent consistently improves with each iteration, demonstrating robust self-enhancement capabilities. This work establishes a novel training paradigm for GUI agents, shifting from isolated optimization to an integrated, self-driven co-evolution approach.
arXiv:2511.11732v1 Announce Type: new Abstract: Modern generative and diffusion models produce highly realistic images that can mislead human perception and even sophisticated automated detection systems. Most detection methods operate in RGB space and thus analyze only three spectral channels. We propose HSI-Detect, a two-stage pipeline that reconstructs a 31-channel hyperspectral image from a standard RGB input and performs detection in the hyperspectral domain. Expanding the input representation into denser spectral bands amplifies manipulation artifacts that are often weak or invisible in the RGB domain, particularly in specific frequency bands. We evaluate HSI-Detect across FaceForensics++ dataset and show the consistent improvements over RGB-only baselines, illustrating the promise of spectral-domain mapping for Deepfake detection.
arXiv:2410.20595v4 Announce Type: replace Abstract: In volcano monitoring, effective recognition of seismic events is essential for understanding volcanic activity and raising timely warning alerts. Traditional methods rely on manual analysis, which can be subjective and labor-intensive. Furthermore, current automatic approaches often tackle detection and classification separately, mostly rely on single station information and generally require tailored preprocessing and representations to perform predictions. These limitations often hinder their application to real-time monitoring and utilization across different volcano conditions. This study introduces a novel approach that utilizes Semantic Segmentation models to automate seismic event recognition by applying a straight forward transformation of multi-channel 1D signals into 2D representations, enabling their use as images. Our framework employs a data-driven, end-to-end design that integrates multi-station seismic data with minimal preprocessing, performing both detection and classification simultaneously for five seismic event classes. We evaluated four state-of-the-art segmentation models (UNet, UNet++, DeepLabV3+ and SwinUNet) on approximately 25.000 seismic events recorded at four different Chilean volcanoes: Nevados del Chill\'an Volcanic Complex, Laguna del Maule, Villarrica and Puyehue-Cord\'on Caulle. Among these models, the UNet architecture was identified as the most effective model, achieving mean F1 and Intersection over Union (IoU) scores of up to 0.91 and 0.88, respectively, and demonstrating superior noise robustness and model flexibility to unseen volcano datasets.