Latest

Fresh from the feed

Filter by timeframe and category to zero in on the moves that matter.

FAST-CAD: A Fairness-Aware Framework for Non-Contact Stroke Diagnosis
paper
arXiv cs.AI3 days ago

arXiv:2511.08887v2 Announce Type: replace-cross Abstract: Stroke is an acute cerebrovascular disease, and timely diagnosis significantly improves patient survival. However, existing automated diagnosis methods suffer from fairness issues across demographic groups, potentially exacerbating healthcare disparities. In this work we propose FAST-CAD, a theoretically grounded framework that combines domain-adversarial training (DAT) with group distributionally robust optimization (Group-DRO) for fair and accurate non-contact stroke diagnosis. Our approach is built on domain adaptation and minimax fairness theory and provides convergence guarantees and fairness bounds. We curate a multimodal dataset covering 12 demographic subgroups defined by age, gender, and posture. FAST-CAD employs self-supervised encoders with adversarial domain discrimination to learn demographic-invariant representations, while Group-DRO optimizes worst-group risk to ensure robust performance across all subgroups. Extensive experiments show that our method achieves superior diagnostic performance while maintaining fairness across demographic groups, and our theoretical analysis supports the effectiveness of the unified DAT + Group-DRO framework. This work provides both practical advances and theoretical insights for fair medical AI systems.

#ai
Score · 2.80
Potent but Stealthy: Rethink Profile Pollution against Sequential Recommendation via Bi-level Constrained Reinforcement Paradigm
paper
arXiv cs.AI3 days ago

arXiv:2511.09392v3 Announce Type: replace-cross Abstract: Sequential Recommenders, which exploit dynamic user intents through interaction sequences, is vulnerable to adversarial attacks. While existing attacks primarily rely on data poisoning, they require large-scale user access or fake profiles thus lacking practicality. In this paper, we focus on the Profile Pollution Attack that subtly contaminates partial user interactions to induce targeted mispredictions. Previous PPA methods suffer from two limitations, i.e., i) over-reliance on sequence horizon impact restricts fine-grained perturbations on item transitions, and ii) holistic modifications cause detectable distribution shifts. To address these challenges, we propose a constrained reinforcement driven attack CREAT that synergizes a bi-level optimization framework with multi-reward reinforcement learning to balance adversarial efficacy and stealthiness. We first develop a Pattern Balanced Rewarding Policy, which integrates pattern inversion rewards to invert critical patterns and distribution consistency rewards to minimize detectable shifts via unbalanced co-optimal transport. Then we employ a Constrained Group Relative Reinforcement Learning paradigm, enabling step-wise perturbations through dynamic barrier constraints and group-shared experience replay, achieving targeted pollution with minimal detectability. Extensive experiments demonstrate the effectiveness of CREAT.

#ai
#research
Score · 2.80
Language-Guided Invariance Probing of Vision-Language Models
paper
arXiv cs.CV3 days ago

arXiv:2511.13494v1 Announce Type: new Abstract: Recent vision-language models (VLMs) such as CLIP, OpenCLIP, EVA02-CLIP and SigLIP achieve strong zero-shot performance, but it is unclear how reliably they respond to controlled linguistic perturbations. We introduce Language-Guided Invariance Probing (LGIP), a benchmark that measures (i) invariance to meaning-preserving paraphrases and (ii) sensitivity to meaning-changing semantic flips in image-text matching. Using 40k MS COCO images with five human captions each, we automatically generate paraphrases and rule-based flips that alter object category, color or count, and summarize model behavior with an invariance error, a semantic sensitivity gap and a positive-rate statistic. Across nine VLMs, EVA02-CLIP and large OpenCLIP variants lie on a favorable invariance-sensitivity frontier, combining low paraphrase-induced variance with consistently higher scores for original captions than for their flipped counterparts. In contrast, SigLIP and SigLIP2 show much larger invariance error and often prefer flipped captions to the human descriptions, especially for object and color edits. These failures are largely invisible to standard retrieval metrics, indicating that LGIP provides a model-agnostic diagnostic for the linguistic robustness of VLMs beyond conventional accuracy scores.

#ai
Score · 2.80
Mapping the Vanishing and Transformation of Urban Villages in China
paper
arXiv cs.CV3 days ago

arXiv:2511.13507v1 Announce Type: new Abstract: Urban villages (UVs), informal settlements embedded within China's urban fabric, have undergone widespread demolition and redevelopment in recent decades. However, there remains a lack of systematic evaluation of whether the demolished land has been effectively reused, raising concerns about the efficacy and sustainability of current redevelopment practices. To address the gap, this study proposes a deep learning-based framework to monitor the spatiotemporal changes of UVs in China. Specifically, semantic segmentation of multi-temporal remote sensing imagery is first used to map evolving UV boundaries, and then post-demolition land use is classified into six categories based on the "remained-demolished-redeveloped" phase: incomplete demolition, vacant land, construction sites, buildings, green spaces, and others. Four representative cities from China's four economic regions were selected as the study areas, i.e., Guangzhou (East), Zhengzhou (Central), Xi'an (West), and Harbin (Northeast). The results indicate: 1) UV redevelopment processes were frequently prolonged; 2) redevelopment transitions primarily occurred in peripheral areas, whereas urban cores remained relatively stable; and 3) three spatiotemporal transformation pathways, i.e., synchronized redevelopment, delayed redevelopment, and gradual optimization, were revealed. This study highlights the fragmented, complex and nonlinear nature of UV redevelopment, underscoring the need for tiered and context-sensitive planning strategies. By linking spatial dynamics with the context of redevelopment policies, the findings offer valuable empirical insights that support more inclusive, efficient, and sustainable urban renewal, while also contributing to a broader global understanding of informal settlement transformations.

#ai
#research
Score · 2.80
Instella: Fully Open Language Models with Stellar Performance
paper
arXiv cs.AI3 days ago

arXiv:2511.10628v2 Announce Type: replace-cross Abstract: Large language models (LLMs) have demonstrated remarkable performance across a wide range of tasks, yet the majority of high-performing models remain closed-source or partially open, limiting transparency and reproducibility. In this work, we introduce Instella, a family of fully open three billion parameter language models trained entirely on openly available data and codebase. Powered by AMD Instinct MI300X GPUs, Instella is developed through large-scale pre-training, general-purpose instruction tuning, and alignment with human preferences. Despite using substantially fewer pre-training tokens than many contemporaries, Instella achieves state-of-the-art results among fully open models and is competitive with leading open-weight models of comparable size. We further release two specialized variants: Instella-Long, capable of handling context lengths up to 128K tokens, and Instella-Math, a reasoning-focused model enhanced through supervised fine-tuning and reinforcement learning on mathematical tasks. Together, these contributions establish Instella as a transparent, performant, and versatile alternative for the community, advancing the goal of open and reproducible language modeling research.

#ai
#llm
#research
#product
Score · 2.80
TimeStampEval: A Simple LLM Eval and a Little Fuzzy Matching Trick to Improve Search Accuracy
paper
arXiv cs.CL3 days ago

arXiv:2511.11594v1 Announce Type: new Abstract: Traditional fuzzy matching often fails when searching for quotes that are semantically identical but syntactically different across documents-a common issue when aligning official written records with speech-to-text transcripts. We introduce TimeStampEval, a benchmark for retrieving precise millisecond timestamps from long transcripts given non-verbatim quotes. Our simple two-stage method dramatically improves retrieval accuracy while cutting inference costs by over 90%. The motivating use case is an automated long-form podcast that assembles Congressional Record clips into AI-hosted narration. The technical challenge: given a sentence-timestamped transcript and a target quote that may differ due to transcription or editorial drift, return exact start and end boundaries. Standard algorithms handle verbatim text but break under fuzzier variants. Evaluating six modern LLMs on a 2,800-sentence (120k-token) transcript revealed four key findings. (1) Prompt design matters more than model choice: placing the query before the transcript and using compact formatting improved accuracy by 3-20 points while reducing token count by 30-40%. (2) Off-by-one errors form a distinct category, showing models understand the task but misplace boundaries. (3) A modest reasoning budget (600-850 tokens) raises accuracy from 37% to 77% for weak setups and to above 90% for strong ones. (4) Our "Assisted Fuzzy" approach-RapidFuzz pre-filtering followed by LLM verification on short snippets-improves fuzzy match accuracy by up to 50 points while halving latency and reducing cost per correct result by up to 96%. Extended tests on ten transcripts (50k-900k tokens, 1989-2025) confirm robustness to transcript length, vocabulary drift, and domain change, maintaining 95-100% rejection accuracy for absent targets.

#ai
#llm
Score · 2.80
MiroThinker: Pushing the Performance Boundaries of Open-Source Research Agents via Model, Context, and Interactive Scaling
paper
arXiv cs.CL3 days ago

arXiv:2511.11793v1 Announce Type: new Abstract: We present MiroThinker v1.0, an open-source research agent designed to advance tool-augmented reasoning and information-seeking capabilities. Unlike previous agents that only scale up model size or context length, MiroThinker explores interaction scaling at the model level, systematically training the model to handle deeper and more frequent agent-environment interactions as a third dimension of performance improvement. Unlike LLM test-time scaling, which operates in isolation and risks degradation with longer reasoning chains, interactive scaling leverages environment feedback and external information acquisition to correct errors and refine trajectories. Through reinforcement learning, the model achieves efficient interaction scaling: with a 256K context window, it can perform up to 600 tool calls per task, enabling sustained multi-turn reasoning and complex real-world research workflows. Across four representative benchmarks-GAIA, HLE, BrowseComp, and BrowseComp-ZH-the 72B variant achieves up to 81.9%, 37.7%, 47.1%, and 55.6% accuracy respectively, surpassing previous open-source agents and approaching commercial counterparts such as GPT-5-high. Our analysis reveals that MiroThinker benefits from interactive scaling consistently: research performance improves predictably as the model engages in deeper and more frequent agent-environment interactions, demonstrating that interaction depth exhibits scaling behaviors analogous to model size and context length. These findings establish interaction scaling as a third critical dimension for building next-generation open research agents, complementing model capacity and context windows.

#ai
#llm
#research
Score · 2.80
On the Notion that Language Models Reason
paper
arXiv cs.CL3 days ago

arXiv:2511.11810v1 Announce Type: new Abstract: Language models (LMs) are said to be exhibiting reasoning, but what does this entail? We assess definitions of reasoning and how key papers in the field of natural language processing (NLP) use the notion and argue that the definitions provided are not consistent with how LMs are trained, process information, and generate new tokens. To illustrate this incommensurability we assume the view that transformer-based LMs implement an \textit{implicit} finite-order Markov kernel mapping contexts to conditional token distributions. In this view, reasoning-like outputs correspond to statistical regularities and approximate statistical invariances in the learned kernel rather than the implementation of explicit logical mechanisms. This view is illustrative of the claim that LMs are "statistical pattern matchers"" and not genuine reasoners and provides a perspective that clarifies why reasoning-like outputs arise in LMs without any guarantees of logical consistency. This distinction is fundamental to how epistemic uncertainty is evaluated in LMs. We invite a discussion on the importance of how the computational processes of the systems we build and analyze in NLP research are described.

#ai
#research
Score · 2.80
Minimax Multi-Target Conformal Prediction with Applications to Imaging Inverse Problems
paper
arXiv cs.CV3 days ago

arXiv:2511.13533v1 Announce Type: new Abstract: In ill-posed imaging inverse problems, uncertainty quantification remains a fundamental challenge, especially in safety-critical applications. Recently, conformal prediction has been used to quantify the uncertainty that the inverse problem contributes to downstream tasks like image classification, image quality assessment, fat mass quantification, etc. While existing works handle only a scalar estimation target, practical applications often involve multiple targets. In response, we propose an asymptotically minimax approach to multi-target conformal prediction that provides tight prediction intervals while ensuring joint marginal coverage. We then outline how our minimax approach can be applied to multi-metric blind image quality assessment, multi-task uncertainty quantification, and multi-round measurement acquisition. Finally, we numerically demonstrate the benefits of our minimax method, relative to existing multi-target conformal prediction methods, using both synthetic and magnetic resonance imaging (MRI) data.

#ai
Score · 2.80
Towards Autoformalization of LLM-generated Outputs for Requirement Verification
paper
arXiv cs.CL3 days ago

arXiv:2511.11829v1 Announce Type: new Abstract: Autoformalization, the process of translating informal statements into formal logic, has gained renewed interest with the emergence of powerful Large Language Models (LLMs). While LLMs show promise in generating structured outputs from natural language (NL), such as Gherkin Scenarios from NL feature requirements, there's currently no formal method to verify if these outputs are accurate. This paper takes a preliminary step toward addressing this gap by exploring the use of a simple LLM-based autoformalizer to verify LLM-generated outputs against a small set of natural language requirements. We conducted two distinct experiments. In the first one, the autoformalizer successfully identified that two differently-worded NL requirements were logically equivalent, demonstrating the pipeline's potential for consistency checks. In the second, the autoformalizer was used to identify a logical inconsistency between a given NL requirement and an LLM-generated output, highlighting its utility as a formal verification tool. Our findings, while limited, suggest that autoformalization holds significant potential for ensuring the fidelity and logical consistency of LLM-generated outputs, laying a crucial foundation for future, more extensive studies into this novel application.

#ai
#llm
#research
Score · 2.80
Three Stage Narrative Analysis; Plot-Sentiment Breakdown, Structure Learning and Concept Detection
paper
arXiv cs.CL3 days ago

arXiv:2511.11857v1 Announce Type: new Abstract: Story understanding and analysis have long been challenging areas within Natural Language Understanding. Automated narrative analysis requires deep computational semantic representations along with syntactic processing. Moreover, the large volume of narrative data demands automated semantic analysis and computational learning rather than manual analytical approaches. In this paper, we propose a framework that analyzes the sentiment arcs of movie scripts and performs extended analysis related to the context of the characters involved. The framework enables the extraction of high-level and low-level concepts conveyed through the narrative. Using dictionary-based sentiment analysis, our approach applies a custom lexicon built with the LabMTsimple storylab module. The custom lexicon is based on the Valence, Arousal, and Dominance scores from the NRC-VAD dataset. Furthermore, the framework advances the analysis by clustering similar sentiment plots using Wards hierarchical clustering technique. Experimental evaluation on a movie dataset shows that the resulting analysis is helpful to consumers and readers when selecting a narrative or story.

#research
Score · 2.80
Identifying Imaging Follow-Up in Radiology Reports: A Comparative Analysis of Traditional ML and LLM Approaches
paper
arXiv cs.CL3 days ago

arXiv:2511.11867v1 Announce Type: new Abstract: Large language models (LLMs) have shown considerable promise in clinical natural language processing, yet few domain-specific datasets exist to rigorously evaluate their performance on radiology tasks. In this work, we introduce an annotated corpus of 6,393 radiology reports from 586 patients, each labeled for follow-up imaging status, to support the development and benchmarking of follow-up adherence detection systems. Using this corpus, we systematically compared traditional machine-learning classifiers, including logistic regression (LR), support vector machines (SVM), Longformer, and a fully fine-tuned Llama3-8B-Instruct, with recent generative LLMs. To evaluate generative LLMs, we tested GPT-4o and the open-source GPT-OSS-20B under two configurations: a baseline (Base) and a task-optimized (Advanced) setting that focused inputs on metadata, recommendation sentences, and their surrounding context. A refined prompt for GPT-OSS-20B further improved reasoning accuracy. Performance was assessed using precision, recall, and F1 scores with 95% confidence intervals estimated via non-parametric bootstrapping. Inter-annotator agreement was high (F1 = 0.846). GPT-4o (Advanced) achieved the best performance (F1 = 0.832), followed closely by GPT-OSS-20B (Advanced; F1 = 0.828). LR and SVM also performed strongly (F1 = 0.776 and 0.775), underscoring that while LLMs approach human-level agreement through prompt optimization, interpretable and resource-efficient models remain valuable baselines.

#ai
#llm
#open_source
Score · 2.80
MedPT: A Massive Medical Question Answering Dataset for Brazilian-Portuguese Speakers
paper
arXiv cs.CL3 days ago

arXiv:2511.11878v1 Announce Type: new Abstract: While large language models (LLMs) show transformative potential in healthcare, their development remains focused on high-resource languages, creating a critical barrier for others as simple translation fails to capture unique clinical and cultural nuances, such as endemic diseases. To address this, we introduce MedPT, the first large-scale, real-world corpus for Brazilian Portuguese, comprising 384,095 authentic question-answer pairs from patient-doctor interactions. The dataset underwent a meticulous multi-stage curation protocol, using a hybrid quantitative-qualitative analysis to filter noise and contextually enrich thousands of ambiguous queries. We further augmented the corpus via LLM-driven annotation, classifying questions into seven semantic types to capture user intent. Our analysis reveals its thematic breadth (3,200 topics) and unique linguistic properties, like the natural asymmetry in patient-doctor communication. To validate its utility, we benchmark a medical specialty routing task: fine-tuning a 1.7B parameter model achieves an outstanding 94\% F1-score on a 20-class setup. Furthermore, our qualitative error analysis shows misclassifications are not random but reflect genuine clinical ambiguities (e.g., between comorbid conditions), proving the dataset's deep semantic richness. We publicly release MedPT to foster the development of more equitable, accurate, and culturally-aware medical technologies for the Portuguese-speaking world.

#ai
#llm
#product
Score · 2.80
ClinStructor: AI-Powered Structuring of Unstructured Clinical Texts
paper
arXiv cs.CL3 days ago

arXiv:2511.11883v1 Announce Type: new Abstract: Clinical notes contain valuable, context-rich information, but their unstructured format introduces several challenges, including unintended biases (e.g., gender or racial bias), and poor generalization across clinical settings (e.g., models trained on one EHR system may perform poorly on another due to format differences) and poor interpretability. To address these issues, we present ClinStructor, a pipeline that leverages large language models (LLMs) to convert clinical free-text into structured, task-specific question-answer pairs prior to predictive modeling. Our method substantially enhances transparency and controllability and only leads to a modest reduction in predictive performance (a 2-3% drop in AUC), compared to direct fine-tuning, on the ICU mortality prediction task. ClinStructor lays a strong foundation for building reliable, interpretable, and generalizable machine learning models in clinical environments.

#ai
#llm
Score · 2.80
Context-Emotion Aware Therapeutic Dialogue Generation: A Multi-component Reinforcement Learning Approach to Language Models for Mental Health Support
paper
arXiv cs.CL3 days ago

arXiv:2511.11884v1 Announce Type: new Abstract: Mental health illness represents a substantial global socioeconomic burden, with COVID-19 further exacerbating accessibility challenges and driving increased demand for telehealth mental health support. While large language models (LLMs) offer promising solutions through 24/7 availability and non-judgmental interactions, pre-trained models often lack the contextual and emotional awareness necessary for appropriate therapeutic responses. This paper investigated the application of supervised fine-tuning (SFT) and reinforcement learning (RL) techniques to enhance GPT-2's capacity for therapeutic dialogue generation. The methodology restructured input formats to enable simultaneous processing of contextual information and emotional states alongside user input, employing a multi-component reward function that aligned model outputs with professional therapist responses and annotated emotions. Results demonstrated improvements through reinforcement learning over baseline GPT-2 across multiple evaluation metrics: BLEU (0.0111), ROUGE-1 (0.1397), ROUGE-2 (0.0213), ROUGE-L (0.1317), and METEOR (0.0581). LLM evaluation confirmed high contextual relevance and professionalism, while reinforcement learning achieved 99.34% emotion accuracy compared to 66.96% for baseline GPT-2. These findings demonstrate reinforcement learning's effectiveness in developing therapeutic dialogue systems that can serve as valuable assistive tools for therapists while maintaining essential human clinical oversight.

#ai
#llm
#research
Score · 2.80
Accuracy is Not Enough: Poisoning Interpretability in Federated Learning via Color Skew
paper
arXiv cs.CV3 days ago

arXiv:2511.13535v1 Announce Type: new Abstract: As machine learning models are increasingly deployed in safety-critical domains, visual explanation techniques have become essential tools for supporting transparency. In this work, we reveal a new class of attacks that compromise model interpretability without affecting accuracy. Specifically, we show that small color perturbations applied by adversarial clients in a federated learning setting can shift a model's saliency maps away from semantically meaningful regions while keeping the prediction unchanged. The proposed saliency-aware attack framework, called Chromatic Perturbation Module, systematically crafts adversarial examples by altering the color contrast between foreground and background in a way that disrupts explanation fidelity. These perturbations accumulate across training rounds, poisoning the global model's internal feature attributions in a stealthy and persistent manner. Our findings challenge a common assumption in model auditing that correct predictions imply faithful explanations and demonstrate that interpretability itself can be an attack surface. We evaluate this vulnerability across multiple datasets and show that standard training pipelines are insufficient to detect or mitigate explanation degradation, especially in the federated learning setting, where subtle color perturbations are harder to discern. Our attack reduces peak activation overlap in Grad-CAM explanations by up to 35% while preserving classification accuracy above 96% on all evaluated datasets.

#ai
Score · 2.80
BootOOD: Self-Supervised Out-of-Distribution Detection via Synthetic Sample Exposure under Neural Collapse
paper
arXiv cs.CV3 days ago

arXiv:2511.13539v1 Announce Type: new Abstract: Out-of-distribution (OOD) detection is critical for deploying image classifiers in safety-sensitive environments, yet existing detectors often struggle when OOD samples are semantically similar to the in-distribution (ID) classes. We present BootOOD, a fully self-supervised OOD detection framework that bootstraps exclusively from ID data and is explicitly designed to handle semantically challenging OOD samples. BootOOD synthesizes pseudo-OOD features through simple transformations of ID representations and leverages Neural Collapse (NC), where ID features cluster tightly around class means with consistent feature norms. Unlike prior approaches that aim to constrain OOD features into subspaces orthogonal to the collapsed ID means, BootOOD introduces a lightweight auxiliary head that performs radius-based classification on feature norms. This design decouples OOD detection from the primary classifier and imposes a relaxed requirement: OOD samples are learned to have smaller feature norms than ID features, which is easier to satisfy when ID and OOD are semantically close. Experiments on CIFAR-10, CIFAR-100, and ImageNet-200 show that BootOOD outperforms prior post-hoc methods, surpasses training-based methods without outlier exposure, and is competitive with state-of-the-art outlier-exposure approaches while maintaining or improving ID accuracy.

#ai
Score · 2.80
Multimodal ML: Quantifying the Improvement of Calorie Estimation Through Image-Text Pairs
paper
arXiv cs.CV3 days ago

arXiv:2511.11705v1 Announce Type: cross Abstract: This paper determines the extent to which short textual inputs (in this case, names of dishes) can improve calorie estimation compared to an image-only baseline model and whether any improvements are statistically significant. Utilizes the TensorFlow library and the Nutrition5k dataset (curated by Google) to train both an image-only CNN and multimodal CNN that accepts both text and an image as input. The MAE of calorie estimations was reduced by 1.06 kcal from 84.76 kcal to 83.70 kcal (1.25% improvement) when using the multimodal model.

#ai
#research
Score · 2.80
InData: Towards Secure Multi-Step, Tool-Based Data Analysis
paper
arXiv cs.CL3 days ago

arXiv:2511.11933v1 Announce Type: new Abstract: Large language model agents for data analysis typically generate and execute code directly on databases. However, when applied to sensitive data, this approach poses significant security risks. To address this issue, we propose a security-motivated alternative: restrict LLMs from direct code generation and data access, and require them to interact with data exclusively through a predefined set of secure, verified tools. Although recent tool-use benchmarks exist, they primarily target tool selection and simple execution rather than the compositional, multi-step reasoning needed for complex data analysis. To reduce this gap, we introduce Indirect Data Engagement (InData), a dataset designed to assess LLMs' multi-step tool-based reasoning ability. InData includes data analysis questions at three difficulty levels--Easy, Medium, and Hard--capturing increasing reasoning complexity. We benchmark 15 open-source LLMs on InData and find that while large models (e.g., gpt-oss-120b) achieve high accuracy on Easy tasks (97.3%), performance drops sharply on Hard tasks (69.6%). These results show that current LLMs still lack robust multi-step tool-based reasoning ability. With InData, we take a step toward enabling the development and evaluation of LLMs with stronger multi-step tool-use capabilities. We will publicly release the dataset and code.

#llm
#product
Score · 2.80
Improving LLM's Attachment to External Knowledge In Dialogue Generation Tasks Through Entity Anonymization
paper
arXiv cs.CL3 days ago

arXiv:2511.11946v1 Announce Type: new Abstract: Knowledge graph-based dialogue generation (KG-DG) is a challenging task requiring models to effectively incorporate external knowledge into conversational responses. While large language models (LLMs) have achieved impressive results across various NLP tasks, their ability to utilize external knowledge in KG-DG remains under-explored. We observe that LLMs often rely on internal knowledge, leading to detachment from provided knowledge graphs, even when they are given a flawlessly retrieved knowledge graph. First, we introduce LLM-KAT, an evaluation procedure for measuring knowledge attachment in generated responses. Second, we propose a simple yet effective entity anonymization technique to encourage LLMs to better leverage external knowledge. Experiments on the OpenDialKG dataset demonstrate that our approach improves LLMs' attachment on external knowledge.

#ai
#llm
Score · 2.80
Page 65 of 93