Latest

Fresh from the feed

Filter by timeframe and category to zero in on the moves that matter.

Proceedings of the Second International Workshop on Next-Generation Language Models for Knowledge Representation and Reasoning (NeLaMKRR 2025)
paper
arXiv cs.AI3 days ago

arXiv:2511.09575v2 Announce Type: replace Abstract: Reasoning is an essential component of human intelligence in that it plays a fundamental role in our ability to think critically, support responsible decisions, and solve challenging problems. Traditionally, AI has addressed reasoning in the context of logic-based representations of knowledge. However, the recent leap forward in natural language processing, with the emergence of language models based on transformers, is hinting at the possibility that these models exhibit reasoning abilities, particularly as they grow in size and are trained on more and more data. Still, despite ongoing discussions about what reasoning is in language models, it is still not easy to articulate to what extent these models are actually capable of reasoning. The goal of this workshop is to create a platform for researchers from different disciplines and/or AI perspectives to explore approaches and techniques with the aim to reconcile reasoning between language models using transformers and logic-based representations. The specific objectives include analysing the reasoning abilities of language models measured alongside KR methods, injecting KR-style reasoning abilities into language models (including by neuro-symbolic means), and formalising the kind of reasoning language models carry out. This exploration aims to uncover how language models can effectively integrate and leverage knowledge and reasoning with it, thus improving their application and utility in areas where precision and reliability are key requirements.

#ai
#research
Score · 2.80
OIDA-QA: A Multimodal Benchmark for Analyzing the Opioid Industry Documents Archive
paper
arXiv cs.AI3 days ago

arXiv:2511.09914v2 Announce Type: replace Abstract: The opioid crisis represents a significant moment in public health that reveals systemic shortcomings across regulatory systems, healthcare practices, corporate governance, and public policy. Analyzing how these interconnected systems simultaneously failed to protect public health requires innovative analytic approaches for exploring the vast amounts of data and documents disclosed in the UCSF-JHU Opioid Industry Documents Archive (OIDA). The complexity, multimodal nature, and specialized characteristics of these healthcare-related legal and corporate documents necessitate more advanced methods and models tailored to specific data types and detailed annotations, ensuring the precision and professionalism in the analysis. In this paper, we tackle this challenge by organizing the original dataset according to document attributes and constructing a benchmark with 400k training documents and 10k for testing. From each document, we extract rich multimodal information-including textual content, visual elements, and layout structures-to capture a comprehensive range of features. Using multiple AI models, we then generate a large-scale dataset comprising 360k training QA pairs and 10k testing QA pairs. Building on this foundation, we develop domain-specific multimodal Large Language Models (LLMs) and explore the impact of multimodal inputs on task performance. To further enhance response accuracy, we incorporate historical QA pairs as contextual grounding for answering current queries. Additionally, we incorporate page references within the answers and introduce an importance-based page classifier, further improving the precision and relevance of the information provided. Preliminary results indicate the improvements with our AI assistant in document information extraction and question-answering tasks. The dataset is available at: https://huggingface.co/datasets/opioidarchive/oida-qa

#ai
#llm
#research
Score · 2.80
3DAlign-DAER: Dynamic Attention Policy and Efficient Retrieval Strategy for Fine-grained 3D-Text Alignment at Scale
paper
arXiv cs.CV3 days ago

arXiv:2511.13211v1 Announce Type: new Abstract: Despite recent advancements in 3D-text cross-modal alignment, existing state-of-the-art methods still struggle to align fine-grained textual semantics with detailed geometric structures, and their alignment performance degrades significantly when scaling to large-scale 3D databases. To overcome this limitation, we introduce 3DAlign-DAER, a unified framework designed to align text and 3D geometry via the proposed dynamic attention policy and the efficient retrieval strategy, capturing subtle correspondences for diverse cross-modal retrieval and classification tasks. Specifically, during the training, our proposed dynamic attention policy (DAP) employs the Hierarchical Attention Fusion (HAF) module to represent the alignment as learnable fine-grained token-to-point attentions. To optimize these attentions across different tasks and geometric hierarchies, our DAP further exploits the Monte Carlo tree search to dynamically calibrate HAF attention weights via a hybrid reward signal and further enhances the alignment between textual descriptions and local 3D geometry. During the inference, our 3DAlign-DAER introduces an Efficient Retrieval Strategy (ERS) to leverage efficient hierarchical searching in the large-scale embedding spaces, outperforming traditional methods (e.g., KNN) in accuracy and efficiency. Furthermore, to facilitate text-3D alignment research and train our 3DAlign-DAER, we construct Align3D-2M, a large-scale dataset featuring 2M text-3D pairs, to provide sufficient fine-grained cross-modal annotations. Extensive and comprehensive experiments demonstrate the superior performance of our 3DAlign-DAER on diverse benchmarks. We will release our codes, models, and datasets.

#ai
#research
#product
Score · 2.80
Toward Dignity-Aware AI: Next-Generation Elderly Monitoring from Fall Detection to ADL
paper
arXiv cs.CV3 days ago

arXiv:2511.11696v1 Announce Type: cross Abstract: This position paper envisions a next-generation elderly monitoring system that moves beyond fall detection toward the broader goal of Activities of Daily Living (ADL) recognition. Our ultimate aim is to design privacy-preserving, edge-deployed, and federated AI systems that can robustly detect and understand daily routines, supporting independence and dignity in aging societies. At present, ADL-specific datasets are still under collection. As a preliminary step, we demonstrate feasibility through experiments using the SISFall dataset and its GAN-augmented variants, treating fall detection as a proxy task. We report initial results on federated learning with non-IID conditions, and embedded deployment on Jetson Orin Nano devices. We then outline open challenges such as domain shift, data scarcity, and privacy risks, and propose directions toward full ADL monitoring in smart-room environments. This work highlights the transition from single-task detection to comprehensive daily activity recognition, providing both early evidence and a roadmap for sustainable and human-centered elderly care AI.

#ai
#research
#open_source
Score · 2.80
Bi-Level Contextual Bandits for Individualized Resource Allocation under Delayed Feedback
paper
arXiv cs.AI3 days ago

arXiv:2511.10572v2 Announce Type: replace Abstract: Equitably allocating limited resources in high-stakes domains-such as education, employment, and healthcare-requires balancing short-term utility with long-term impact, while accounting for delayed outcomes, hidden heterogeneity, and ethical constraints. However, most learning-based allocation frameworks either assume immediate feedback or ignore the complex interplay between individual characteristics and intervention dynamics. We propose a novel bi-level contextual bandit framework for individualized resource allocation under delayed feedback, designed to operate in real-world settings with dynamic populations, capacity constraints, and time-sensitive impact. At the meta level, the model optimizes subgroup-level budget allocations to satisfy fairness and operational constraints. At the base level, it identifies the most responsive individuals within each group using a neural network trained on observational data, while respecting cooldown windows and delayed treatment effects modeled via resource-specific delay kernels. By explicitly modeling temporal dynamics and feedback delays, the algorithm continually refines its policy as new data arrive, enabling more responsive and adaptive decision-making. We validate our approach on two real-world datasets from education and workforce development, showing that it achieves higher cumulative outcomes, better adapts to delay structures, and ensures equitable distribution across subgroups. Our results highlight the potential of delay-aware, data-driven decision-making systems to improve institutional policy and social welfare.

#ai
Score · 2.80
GreatSplicing: A Semantically Rich Splicing Dataset
paper
arXiv cs.AI3 days ago

arXiv:2310.10070v3 Announce Type: replace-cross Abstract: In existing splicing forgery datasets, the insufficient semantic variety of spliced regions causes trained detection models to overfit semantic features rather than learn genuine splicing traces. Meanwhile, the lack of a reasonable benchmark dataset has led to inconsistent experimental settings across existing detection methods. To address these issues, we propose GreatSplicing, a manually created, large-scale, high-quality splicing dataset. GreatSplicing comprises 5,000 spliced images and covers spliced regions across 335 distinct semantic categories, enabling detection models to learn splicing traces more effectively. Empirical results show that detection models trained on GreatSplicing achieve low misidentification rates and stronger cross-dataset generalization compared to existing datasets. GreatSplicing is now publicly available for research purposes at the following link.

#ai
#research
Score · 2.80
Survey in Characterization of Semantic Change
paper
arXiv cs.AI3 days ago

arXiv:2402.19088v4 Announce Type: replace-cross Abstract: Live languages continuously evolve to integrate the cultural change of human societies. This evolution manifests through neologisms (new words) or \textbf{semantic changes} of words (new meaning to existing words). Understanding the meaning of words is vital for interpreting texts coming from different cultures (regionalism or slang), domains (e.g., technical terms), or periods. In computer science, these words are relevant to computational linguistics algorithms such as translation, information retrieval, question answering, etc. Semantic changes can potentially impact the quality of the outcomes of these algorithms. Therefore, it is important to understand and characterize these changes formally. The study of this impact is a recent problem that has attracted the attention of the computational linguistics community. Several approaches propose methods to detect semantic changes with good precision, but more effort is needed to characterize how the meaning of words changes and to reason about how to reduce the impact of semantic change. This survey provides an understandable overview of existing approaches to the \textit{characterization of semantic changes} and also formally defines three classes of characterizations: if the meaning of a word becomes more general or narrow (change in dimension) if the word is used in a more pejorative or positive/ameliorated sense (change in orientation), and if there is a trend to use the word in a, for instance, metaphoric or metonymic context (change in relation). We summarized the main aspects of the selected publications in a table and discussed the needs and trends in the research activities on semantic change characterization.

#ai
#research
Score · 2.80
Hybrid-Domain Adaptative Representation Learning for Gaze Estimation
paper
arXiv cs.CV3 days ago

arXiv:2511.13222v1 Announce Type: new Abstract: Appearance-based gaze estimation, aiming to predict accurate 3D gaze direction from a single facial image, has made promising progress in recent years. However, most methods suffer significant performance degradation in cross-domain evaluation due to interference from gaze-irrelevant factors, such as expressions, wearables, and image quality. To alleviate this problem, we present a novel Hybrid-domain Adaptative Representation Learning (shorted by HARL) framework that exploits multi-source hybrid datasets to learn robust gaze representation. More specifically, we propose to disentangle gaze-relevant representation from low-quality facial images by aligning features extracted from high-quality near-eye images in an unsupervised domain-adaptation manner, which hardly requires any computational or inference costs. Additionally, we analyze the effect of head-pose and design a simple yet efficient sparse graph fusion module to explore the geometric constraint between gaze direction and head-pose, leading to a dense and robust gaze representation. Extensive experiments on EyeDiap, MPIIFaceGaze, and Gaze360 datasets demonstrate that our approach achieves state-of-the-art accuracy of $\textbf{5.02}^{\circ}$ and $\textbf{3.36}^{\circ}$, and $\textbf{9.26}^{\circ}$ respectively, and present competitive performances through cross-dataset evaluation. The code is available at https://github.com/da60266/HARL.

#ai
#open_source
Score · 2.80
MRIQT: Physics-Aware Diffusion Model for Image Quality Transfer in Neonatal Ultra-Low-Field MRI
paper
arXiv cs.CV3 days ago

arXiv:2511.13232v1 Announce Type: new Abstract: Portable ultra-low-field MRI (uLF-MRI, 0.064 T) offers accessible neuroimaging for neonatal care but suffers from low signal-to-noise ratio and poor diagnostic quality compared to high-field (HF) MRI. We propose MRIQT, a 3D conditional diffusion framework for image quality transfer (IQT) from uLF to HF MRI. MRIQT combines realistic K-space degradation for physics-consistent uLF simulation, v-prediction with classifier-free guidance for stable image-to-image generation, and an SNR-weighted 3D perceptual loss for anatomical fidelity. The model denoises from a noised uLF input conditioned on the same scan, leveraging volumetric attention-UNet architecture for structure-preserving translation. Trained on a neonatal cohort with diverse pathologies, MRIQT surpasses recent GAN and CNN baselines in PSNR 15.3% with 1.78% over the state of the art, while physicians rated 85% of its outputs as good quality with clear pathology present. MRIQT enables high-fidelity, diffusion-based enhancement of portable ultra-low-field (uLF) MRI for deliable neonatal brain assessment.

#ai
Score · 2.80
Partial Information Decomposition for Data Interpretability and Feature Selection
paper
arXiv cs.AI3 days ago

arXiv:2405.19212v4 Announce Type: replace-cross Abstract: In this paper, we introduce Partial Information Decomposition of Features (PIDF), a new paradigm for simultaneous data interpretability and feature selection. Contrary to traditional methods that assign a single importance value, our approach is based on three metrics per feature: the mutual information shared with the target variable, the feature's contribution to synergistic information, and the amount of this information that is redundant. In particular, we develop a novel procedure based on these three metrics, which reveals not only how features are correlated with the target but also the additional and overlapping information provided by considering them in combination with other features. We extensively evaluate PIDF using both synthetic and real-world data, demonstrating its potential applications and effectiveness, by considering case studies from genetics and neuroscience.

#research
Score · 2.80
Posterior Label Smoothing for Node Classification
paper
arXiv cs.AI3 days ago

arXiv:2406.00410v2 Announce Type: replace-cross Abstract: Label smoothing is a widely studied regularization technique in machine learning. However, its potential for node classification in graph-structured data, spanning homophilic to heterophilic graphs, remains largely unexplored. We introduce posterior label smoothing, a novel method for transductive node classification that derives soft labels from a posterior distribution conditioned on neighborhood labels. The likelihood and prior distributions are estimated from the global statistics of the graph structure, allowing our approach to adapt naturally to various graph properties. We evaluate our method on 10 benchmark datasets using eight baseline models, demonstrating consistent improvements in classification accuracy. The following analysis demonstrates that soft labels mitigate overfitting during training, leading to better generalization performance, and that pseudo-labeling effectively refines the global label statistics of the graph. Our code is available at https://github.com/ml-postech/PosteL.

#ai
#open_source
Score · 2.80
Harnessing Bounded-Support Evolution Strategies for Policy Refinement
paper
arXiv cs.AI3 days ago

arXiv:2511.09923v2 Announce Type: replace-cross Abstract: Improving competent robot policies with on-policy RL is often hampered by noisy, low-signal gradients. We revisit Evolution Strategies (ES) as a policy-gradient proxy and localize exploration with bounded, antithetic triangular perturbations, suitable for policy refinement. We propose Triangular-Distribution ES (TD-ES) which pairs bounded triangular noise with a centered-rank finite-difference estimator to deliver stable, parallelizable, gradient-free updates. In a two-stage pipeline - PPO pretraining followed by TD-ES refinement - this preserves early sample efficiency while enabling robust late-stage gains. Across a suite of robotic manipulation tasks, TD-ES raises success rates by 26.5% relative to PPO and greatly reduces variance, offering a simple, compute-light path to reliable refinement.

#ai
Score · 2.80
MMD-Thinker: Adaptive Multi-Dimensional Thinking for Multimodal Misinformation Detection
paper
arXiv cs.CV3 days ago

arXiv:2511.13242v1 Announce Type: new Abstract: Multimodal misinformation floods on various social media, and continues to evolve in the era of AI-generated content (AIGC). The emerged misinformation with low creation cost and high deception poses significant threats to society. While recent studies leverage general-purpose multimodal large language models (MLLMs) to achieve remarkable results in detection, they encounter two critical limitations: (1) Insufficient reasoning, where general-purpose MLLMs often follow the uniform reasoning paradigm but generate inaccurate explanations and judgments, due to the lack of the task-specific knowledge of multimodal misinformation detection. (2) Reasoning biases, where a single thinking mode make detectors a suboptimal path for judgment, struggling to keep pace with the fast-growing and intricate multimodal misinformation. In this paper, we propose MMD-Thinker, a two-stage framework for multimodal misinformation detection through adaptive multi-dimensional thinking. First, we develop tailor-designed thinking mode for multimodal misinformation detection. Second, we adopt task-specific instruction tuning to inject the tailored thinking mode into general-purpose MLLMs. Third, we further leverage reinforcement learning strategy with a mixed advantage function, which incentivizes the reasoning capabilities in trajectories. Furthermore, we construct the multimodal misinformation reasoning (MMR) dataset, encompasses more than 8K image-text pairs with both reasoning processes and classification labels, to make progress in the relam of multimodal misinformation detection. Experimental results demonstrate that our proposed MMD-Thinker achieves state-of-the-art performance on both in-domain and out-of-domain benchmark datasets, while maintaining flexible inference and token usage. Code will be publicly available at Github.

#ai
#llm
#research
#open_source
Score · 2.80
Referring Camouflaged Object Detection With Multi-Context Overlapped Windows Cross-Attention
paper
arXiv cs.CV3 days ago

arXiv:2511.13249v1 Announce Type: new Abstract: Referring camouflaged object detection (Ref-COD) aims to identify hidden objects by incorporating reference information such as images and text descriptions. Previous research has transformed reference images with salient objects into one-dimensional prompts, yielding significant results. We explore ways to enhance performance through multi-context fusion of rich salient image features and camouflaged object features. Therefore, we propose RFMNet, which utilizes features from multiple encoding stages of the reference salient images and performs interactive fusion with the camouflage features at the corresponding encoding stages. Given that the features in salient object images contain abundant object-related detail information, performing feature fusion within local areas is more beneficial for detecting camouflaged objects. Therefore, we propose an Overlapped Windows Cross-attention mechanism to enable the model to focus more attention on the local information matching based on reference features. Besides, we propose the Referring Feature Aggregation (RFA) module to decode and segment the camouflaged objects progressively. Extensive experiments on the Ref-COD benchmark demonstrate that our method achieves state-of-the-art performance.

#ai
#research
Score · 2.80
GeoX-Bench: Benchmarking Cross-View Geo-Localization and Pose Estimation Capabilities of Large Multimodal Models
paper
arXiv cs.CV3 days ago

arXiv:2511.13259v1 Announce Type: new Abstract: Large multimodal models (LMMs) have demonstrated remarkable capabilities across a wide range of tasks, however their knowledge and abilities in the cross-view geo-localization and pose estimation domains remain unexplored, despite potential benefits for navigation, autonomous driving, outdoor robotics, \textit{etc}. To bridge this gap, we introduce \textbf{GeoX-Bench}, a comprehensive \underline{Bench}mark designed to explore and evaluate the capabilities of LMMs in \underline{cross}-view \underline{Geo}-localization and pose estimation. Specifically, GeoX-Bench contains 10,859 panoramic-satellite image pairs spanning 128 cities in 49 countries, along with corresponding 755,976 question-answering (QA) pairs. Among these, 42,900 QA pairs are designated for benchmarking, while the remaining are intended to enhance the capabilities of LMMs. Based on GeoX-Bench, we evaluate the capabilities of 25 state-of-the-art LMMs on cross-view geo-localization and pose estimation tasks, and further explore the empowered capabilities of instruction-tuning. Our benchmark demonstrate that while current LMMs achieve impressive performance in geo-localization tasks, their effectiveness declines significantly on the more complex pose estimation tasks, highlighting a critical area for future improvement, and instruction-tuning LMMs on the training data of GeoX-Bench can significantly improve the cross-view geo-sense abilities. The GeoX-Bench is available at \textcolor{magenta}{https://github.com/IntMeGroup/GeoX-Bench}.

#ai
#open_source
Score · 2.80
Strada-LLM: Graph LLM for traffic prediction
paper
arXiv cs.AI3 days ago

arXiv:2410.20856v3 Announce Type: replace-cross Abstract: Traffic forecasting is pivotal for intelligent transportation systems, where accurate and interpretable predictions can significantly enhance operational efficiency and safety. A key challenge stems from the heterogeneity of traffic conditions across diverse locations, leading to highly varied traffic data distributions. Large language models (LLMs) show exceptional promise for few-shot learning in such dynamic and data-sparse scenarios. However, existing LLM-based solutions often rely on prompt-tuning, which can struggle to fully capture complex graph relationships and spatiotemporal dependencies-thereby limiting adaptability and interpretability in real-world traffic networks. We address these gaps by introducing Strada-LLM, a novel multivariate probabilistic forecasting LLM that explicitly models both temporal and spatial traffic patterns. By incorporating proximal traffic information as covariates, Strada-LLM more effectively captures local variations and outperforms prompt-based existing LLMs. To further enhance adaptability, we propose a lightweight distribution-derived strategy for domain adaptation, enabling parameter-efficient model updates when encountering new data distributions or altered network topologies-even under few-shot constraints. Empirical evaluations on spatio-temporal transportation datasets demonstrate that Strada-LLM consistently surpasses state-of-the-art LLM-driven and traditional GNN-based predictors. Specifically, it improves long-term forecasting by 17% in RMSE error and 16% more efficiency. Moreover, it maintains robust performance across different LLM backbones with minimal degradation, making it a versatile and powerful solution for real-world traffic prediction tasks.

#ai
#llm
Score · 2.80
DreamRunner: Fine-Grained Compositional Story-to-Video Generation with Retrieval-Augmented Motion Adaptation
paper
arXiv cs.AI3 days ago

arXiv:2411.16657v4 Announce Type: replace-cross Abstract: Storytelling video generation (SVG) aims to produce coherent and visually rich multi-scene videos that follow a structured narrative. Existing methods primarily employ LLM for high-level planning to decompose a story into scene-level descriptions, which are then independently generated and stitched together. However, these approaches struggle with generating high-quality videos aligned with the complex single-scene description, as visualizing such complex description involves coherent composition of multiple characters and events, complex motion synthesis and multi-character customization. To address these challenges, we propose DREAMRUNNER, a novel story-to-video generation method: First, we structure the input script using a large language model (LLM) to facilitate both coarse-grained scene planning as well as fine-grained object-level layout planning. Next, DREAMRUNNER presents retrieval-augmented test-time adaptation to capture target motion priors for objects in each scene, supporting diverse motion customization based on retrieved videos, thus facilitating the generation of new videos with complex, scripted motions. Lastly, we propose a novel spatial-temporal region-based 3D attention and prior injection module SR3AI for fine-grained object-motion binding and frame-by-frame spatial-temporal semantic control. We compare DREAMRUNNER with various SVG baselines, demonstrating state-of-the-art performance in character consistency, text alignment, and smooth transitions. Additionally, DREAMRUNNER exhibits strong fine-grained condition-following ability in compositional text-to-video generation, significantly outperforming baselines on T2V-ComBench. Finally, we validate DREAMRUNNER's robust ability to generate multi-object interactions with qualitative examples.

#ai
#llm
Score · 2.80
PustakAI: Curriculum-Aligned and Interactive Textbooks Using Large Language Models
paper
arXiv cs.AI3 days ago

arXiv:2511.10002v2 Announce Type: replace-cross Abstract: Large Language Models (LLMs) have demonstrated remarkable capabilities in understanding and generating human-like content. This has revolutionized various sectors such as healthcare, software development, and education. In education, LLMs offer potential for personalized and interactive learning experiences, especially in regions with limited teaching resources. However, adapting these models effectively to curriculum-specific content, such as the National Council of Educational Research and Training (NCERT) syllabus in India, presents unique challenges in terms of accuracy, alignment, and pedagogical relevance. In this paper, we present the framework "PustakAI"\footnote{Pustak means `book' in many Indian languages.} for the design and evaluation of a novel question-answering dataset "NCERT-QA" aligned with the NCERT curriculum for English and Science subjects of grades 6 to 8. We classify the curated QA pairs as Factoid, Inferential, and Others (evaluative and reasoning). We evaluate the dataset with various prompting techniques, such as meta-prompt, few-shot, and CoT-style prompting, using diverse evaluation metrics to understand which approach aligns more efficiently with the structure and demands of the curriculum. Along with the usability of the dataset, we analyze the strengths and limitations of current open-source LLMs (Gemma3:1b, Llama3.2:3b, and Nemotron-mini:4b) and high-end LLMs (Llama-4-Scout-17B and Deepseek-r1-70B) as AI-based learning tools in formal education systems.

#ai
#llm
#research
Score · 2.80
Building Egocentric Procedural AI Assistant: Methods, Benchmarks, and Challenges
paper
arXiv cs.CV3 days ago

arXiv:2511.13261v1 Announce Type: new Abstract: Driven by recent advances in vision language models (VLMs) and egocentric perception research, we introduce the concept of an egocentric procedural AI assistant (EgoProceAssist) tailored to step-by-step support daily procedural tasks in a first-person view. In this work, we start by identifying three core tasks: egocentric procedural error detection, egocentric procedural learning, and egocentric procedural question answering. These tasks define the essential functions of EgoProceAssist within a new taxonomy. Specifically, our work encompasses a comprehensive review of current techniques, relevant datasets, and evaluation metrics across these three core areas. To clarify the gap between the proposed EgoProceAssist and existing VLM-based AI assistants, we introduce novel experiments and provide a comprehensive evaluation of representative VLM-based methods. Based on these findings and our technical analysis, we discuss the challenges ahead and suggest future research directions. Furthermore, an exhaustive list of this study is publicly available in an active repository that continuously collects the latest work: https://github.com/z1oong/Building-Egocentric-Procedural-AI-Assistant

#ai
#research
#open_source
Score · 2.80
SymGS : Leveraging Local Symmetries for 3D Gaussian Splatting Compression
paper
arXiv cs.CV3 days ago

arXiv:2511.13264v1 Announce Type: new Abstract: 3D Gaussian Splatting has emerged as a transformative technique in novel view synthesis, primarily due to its high rendering speed and photorealistic fidelity. However, its memory footprint scales rapidly with scene complexity, often reaching several gigabytes. Existing methods address this issue by introducing compression strategies that exploit primitive-level redundancy through similarity detection and quantization. We aim to surpass the compression limits of such methods by incorporating symmetry-aware techniques, specifically targeting mirror symmetries to eliminate redundant primitives. We propose a novel compression framework, \textbf{\textit{SymGS}}, introducing learnable mirrors into the scene, thereby eliminating local and global reflective redundancies for compression. Our framework functions as a plug-and-play enhancement to state-of-the-art compression methods, (e.g. HAC) to achieve further compression. Compared to HAC, we achieve $1.66 \times$ compression across benchmark datasets (upto $3\times$ on large-scale scenes). On an average, SymGS enables $\bf{108\times}$ compression of a 3DGS scene, while preserving rendering quality. The project page and supplementary can be found at \textbf{\color{cyan}{symgs.github.io}}

#ai
#open_source
Score · 2.80
Page 61 of 93