Latest

Fresh from the feed

Filter by timeframe and category to zero in on the moves that matter.

Context-aware Adaptive Visualizations for Critical Decision Making
paper
arXiv cs.AI3 days ago

arXiv:2511.11476v1 Announce Type: cross Abstract: Effective decision-making often relies on timely insights from complex visual data. While Information Visualization (InfoVis) dashboards can support this process, they rarely adapt to users' cognitive state, and less so in real time. We present Symbiotik, an intelligent, context-aware adaptive visualization system that leverages neurophysiological signals to estimate mental workload (MWL) and dynamically adapt visual dashboards using reinforcement learning (RL). Through a user study with 120 participants and three visualization types, we demonstrate that our approach improves task performance and engagement. Symbiotik offers a scalable, real-time adaptation architecture, and a validated methodology for neuroadaptive user interfaces.

#research
Score · 2.80
Skeletons Speak Louder than Text: A Motion-Aware Pretraining Paradigm for Video-Based Person Re-Identification
paper
arXiv cs.CV3 days ago

arXiv:2511.13150v1 Announce Type: new Abstract: Multimodal pretraining has revolutionized visual understanding, but its impact on video-based person re-identification (ReID) remains underexplored. Existing approaches often rely on video-text pairs, yet suffer from two fundamental limitations: (1) lack of genuine multimodal pretraining, and (2) text poorly captures fine-grained temporal motion-an essential cue for distinguishing identities in video. In this work, we take a bold departure from text-based paradigms by introducing the first skeleton-driven pretraining framework for ReID. To achieve this, we propose Contrastive Skeleton-Image Pretraining for ReID (CSIP-ReID), a novel two-stage method that leverages skeleton sequences as a spatiotemporally informative modality aligned with video frames. In the first stage, we employ contrastive learning to align skeleton and visual features at sequence level. In the second stage, we introduce a dynamic Prototype Fusion Updater (PFU) to refine multimodal identity prototypes, fusing motion and appearance cues. Moreover, we propose a Skeleton Guided Temporal Modeling (SGTM) module that distills temporal cues from skeleton data and integrates them into visual features. Extensive experiments demonstrate that CSIP-ReID achieves new state-of-the-art results on standard video ReID benchmarks (MARS, LS-VID, iLIDS-VID). Moreover, it exhibits strong generalization to skeleton-only ReID tasks (BIWI, IAS), significantly outperforming previous methods. CSIP-ReID pioneers an annotation-free and motion-aware pretraining paradigm for ReID, opening a new frontier in multimodal representation learning.

#ai
Score · 2.80
SOMA: Feature Gradient Enhanced Affine-Flow Matching for SAR-Optical Registration
paper
arXiv cs.CV3 days ago

arXiv:2511.13168v1 Announce Type: new Abstract: Achieving pixel-level registration between SAR and optical images remains a challenging task due to their fundamentally different imaging mechanisms and visual characteristics. Although deep learning has achieved great success in many cross-modal tasks, its performance on SAR-Optical registration tasks is still unsatisfactory. Gradient-based information has traditionally played a crucial role in handcrafted descriptors by highlighting structural differences. However, such gradient cues have not been effectively leveraged in deep learning frameworks for SAR-Optical image matching. To address this gap, we propose SOMA, a dense registration framework that integrates structural gradient priors into deep features and refines alignment through a hybrid matching strategy. Specifically, we introduce the Feature Gradient Enhancer (FGE), which embeds multi-scale, multi-directional gradient filters into the feature space using attention and reconstruction mechanisms to boost feature distinctiveness. Furthermore, we propose the Global-Local Affine-Flow Matcher (GLAM), which combines affine transformation and flow-based refinement within a coarse-to-fine architecture to ensure both structural consistency and local accuracy. Experimental results demonstrate that SOMA significantly improves registration precision, increasing the CMR@1px by 12.29% on the SEN1-2 dataset and 18.50% on the GFGE_SO dataset. In addition, SOMA exhibits strong robustness and generalizes well across diverse scenes and resolutions.

#ai
Score · 2.80
THIR: Topological Histopathological Image Retrieval
paper
arXiv cs.CV3 days ago

arXiv:2511.13170v1 Announce Type: new Abstract: According to the World Health Organization, breast cancer claimed the lives of approximately 685,000 women in 2020. Early diagnosis and accurate clinical decision making are critical in reducing this global burden. In this study, we propose THIR, a novel Content-Based Medical Image Retrieval (CBMIR) framework that leverages topological data analysis specifically, Betti numbers derived from persistent homology to characterize and retrieve histopathological images based on their intrinsic structural patterns. Unlike conventional deep learning approaches that rely on extensive training, annotated datasets, and powerful GPU resources, THIR operates entirely without supervision. It extracts topological fingerprints directly from RGB histopathological images using cubical persistence, encoding the evolution of loops as compact, interpretable feature vectors. The similarity retrieval is then performed by computing the distances between these topological descriptors, efficiently returning the top-K most relevant matches. Extensive experiments on the BreaKHis dataset demonstrate that THIR outperforms state of the art supervised and unsupervised methods. It processes the entire dataset in under 20 minutes on a standard CPU, offering a fast, scalable, and training free solution for clinical image retrieval.

#ai
#research
Score · 2.80
Variational Quantum Algorithms for Particle Track Reconstruction
paper
arXiv cs.AI3 days ago

arXiv:2511.11397v1 Announce Type: cross Abstract: Quantum Computing is a rapidly developing field with the potential to tackle the increasing computational challenges faced in high-energy physics. In this work, we explore the potential and limitations of variational quantum algorithms in solving the particle track reconstruction problem. We present an analysis of two distinct formulations for identifying straight-line tracks in a multilayer detection system, inspired by the LHCb vertex detector. The first approach is formulated as a ground-state energy problem, while the second approach is formulated as a system of linear equations. This work addresses one of the main challenges when dealing with variational quantum algorithms on general problems, namely designing an expressive and efficient quantum ansatz working on tracking events with fixed detector geometry. For this purpose, we employed a quantum architecture search method based on Monte Carlo Tree Search to design the quantum circuits for different problem sizes. We provide experimental results to test our approach on both formulations for different problem sizes in terms of performance and computational cost.

#ai
Score · 2.80
The Persistence of Cultural Memory: Investigating Multimodal Iconicity in Diffusion Models
paper
arXiv cs.AI3 days ago

arXiv:2511.11435v1 Announce Type: cross Abstract: Our work addresses the ambiguity between generalization and memorization in text-to-image diffusion models, focusing on a specific case we term multimodal iconicity. This refers to instances where images and texts evoke culturally shared associations, such as when a title recalls a familiar artwork or film scene. While prior research on memorization and unlearning emphasizes forgetting, we examine what is remembered and how, focusing on the balance between recognizing cultural references and reproducing them. We introduce an evaluation framework that separates recognition, whether a model identifies a reference, from realization, how it depicts it through replication or reinterpretation, quantified through measures capturing both dimensions. By evaluating five diffusion models across 767 Wikidata-derived cultural references spanning static and dynamic imagery, we show that our framework distinguishes replication from transformation more effectively than existing similarity-based methods. To assess linguistic sensitivity, we conduct prompt perturbation experiments using synonym substitutions and literal image descriptions, finding that models often reproduce iconic visual structures even when textual cues are altered. Finally, our analysis shows that cultural alignment correlates not only with training data frequency, but also textual uniqueness, reference popularity, and creation date. Our work reveals that the value of diffusion models lies not only in what they reproduce but in how they transform and recontextualize cultural knowledge, advancing evaluation beyond simple text-image matching toward richer contextual understanding.

#ai
#research
Score · 2.80
Retrofit: Continual Learning with Bounded Forgetting for Security Applications
paper
arXiv cs.AI3 days ago

arXiv:2511.11439v1 Announce Type: cross Abstract: Modern security analytics are increasingly powered by deep learning models, but their performance often degrades as threat landscapes evolve and data representations shift. While continual learning (CL) offers a promising paradigm to maintain model effectiveness, many approaches rely on full retraining or data replay, which are infeasible in data-sensitive environments. Moreover, existing methods remain inadequate for security-critical scenarios, facing two coupled challenges in knowledge transfer: preserving prior knowledge without old data and integrating new knowledge with minimal interference. We propose RETROFIT, a data retrospective-free continual learning method that achieves bounded forgetting for effective knowledge transfer. Our key idea is to consolidate previously trained and newly fine-tuned models, serving as teachers of old and new knowledge, through parameter-level merging that eliminates the need for historical data. To mitigate interference, we apply low-rank and sparse updates that confine parameter changes to independent subspaces, while a knowledge arbitration dynamically balances the teacher contributions guided by model confidence. Our evaluation on two representative applications demonstrates that RETROFIT consistently mitigates forgetting while maintaining adaptability. In malware detection under temporal drift, it substantially improves the retention score, from 20.2% to 38.6% over CL baselines, and exceeds the oracle upper bound on new data. In binary summarization across decompilation levels, where analyzing stripped binaries is especially challenging, RETROFIT achieves around twice the BLEU score of transfer learning used in prior work and surpasses all baselines in cross-representation generalization.

#ai
Score · 2.80
Benchmarking Visual LLMs Resilience to Unanswerable Questions on Visually Rich Documents
paper
arXiv cs.AI3 days ago

arXiv:2511.11468v1 Announce Type: cross Abstract: The evolution of Visual Large Language Models (VLLMs) has revolutionized the automatic understanding of Visually Rich Documents (VRDs), which contain both textual and visual elements. Although VLLMs excel in Visual Question Answering (VQA) on multi-page VRDs, their ability to detect unanswerable questions is still an open research question. Our research delves into the robustness of the VLLMs to plausible yet unanswerable questions, i.e., questions that appear valid but cannot be answered due to subtle corruptions caused by swaps between related concepts or plausible question formulations. Corruptions are generated by replacing the original natural language entities with other ones of the same type, belonging to different document elements, and in different layout positions or pages of the related document. To this end, we present VRD-UQA (VISUALLY RICH DOCUMENT UNANSWERABLE QUESTION ANSWERING), a benchmark for evaluating VLLMs' resilience to plausible yet unanswerable questions across multiple dimensions. It automatically alters the questions of existing VQA datasets consisting of multi-page VRDs, verifies their unanswerability using a VLLM-as-a-judge approach, and then thoroughly evaluates VLLMs' performance. Experiments, run on 12 models, analyze: (1) The VLLMs' accuracy in detecting unanswerable questions at both page and document levels; (2) The effect of different types of corruption (NLP entity, document element, layout); (3) The effectiveness of different knowledge injection strategies based on in-context learning (OCR, multi-page selection, or the possibility of unanswerability). Our findings reveal VLLMs' limitations and demonstrate that VRD-UQA can serve as an evaluation framework for developing resilient document VQA systems.

#ai
#llm
#research
Score · 2.80
Free-Form Scene Editor: Enabling Multi-Round Object Manipulation like in a 3D Engine
paper
arXiv cs.CV3 days ago

arXiv:2511.13713v1 Announce Type: new Abstract: Recent advances in text-to-image (T2I) diffusion models have significantly improved semantic image editing, yet most methods fall short in performing 3D-aware object manipulation. In this work, we present FFSE, a 3D-aware autoregressive framework designed to enable intuitive, physically-consistent object editing directly on real-world images. Unlike previous approaches that either operate in image space or require slow and error-prone 3D reconstruction, FFSE models editing as a sequence of learned 3D transformations, allowing users to perform arbitrary manipulations, such as translation, scaling, and rotation, while preserving realistic background effects (e.g., shadows, reflections) and maintaining global scene consistency across multiple editing rounds. To support learning of multi-round 3D-aware object manipulation, we introduce 3DObjectEditor, a hybrid dataset constructed from simulated editing sequences across diverse objects and scenes, enabling effective training under multi-round and dynamic conditions. Extensive experiments show that the proposed FFSE significantly outperforms existing methods in both single-round and multi-round 3D-aware editing scenarios.

#ai
Score · 2.80
ImAgent: A Unified Multimodal Agent Framework for Test-Time Scalable Image Generation
paper
arXiv cs.AI3 days ago

arXiv:2511.11483v1 Announce Type: cross Abstract: Recent text-to-image (T2I) models have made remarkable progress in generating visually realistic and semantically coherent images. However, they still suffer from randomness and inconsistency with the given prompts, particularly when textual descriptions are vague or underspecified. Existing approaches, such as prompt rewriting, best-of-N sampling, and self-refinement, can mitigate these issues but usually require additional modules and operate independently, hindering test-time scaling efficiency and increasing computational overhead. In this paper, we introduce ImAgent, a training-free unified multimodal agent that integrates reasoning, generation, and self-evaluation within a single framework for efficient test-time scaling. Guided by a policy controller, multiple generation actions dynamically interact and self-organize to enhance image fidelity and semantic alignment without relying on external models. Extensive experiments on image generation and editing tasks demonstrate that ImAgent consistently improves over the backbone and even surpasses other strong baselines where the backbone model fails, highlighting the potential of unified multimodal agents for adaptive and efficient image generation under test-time scaling.

#ai
#research
Score · 2.80
Intrinsic Dimension Estimation for Radio Galaxy Zoo using Diffusion Models
paper
arXiv cs.AI3 days ago

arXiv:2511.11490v1 Announce Type: cross Abstract: In this work, we estimate the intrinsic dimension (iD) of the Radio Galaxy Zoo (RGZ) dataset using a score-based diffusion model. We examine how the iD estimates vary as a function of Bayesian neural network (BNN) energy scores, which measure how similar the radio sources are to the MiraBest subset of the RGZ dataset. We find that out-of-distribution sources exhibit higher iD values, and that the overall iD for RGZ exceeds those typically reported for natural image datasets. Furthermore, we analyse how iD varies across Fanaroff-Riley (FR) morphological classes and as a function of the signal-to-noise ratio (SNR). While no relationship is found between FR I and FR II classes, a weak trend toward higher SNR at lower iD. Future work using the RGZ dataset could make use of the relationship between iD and energy scores to quantitatively study and improve the representations learned by various self-supervised learning algorithms.

#research
#open_source
Score · 2.80
PAS : Prelim Attention Score for Detecting Object Hallucinations in Large Vision--Language Models
paper
arXiv cs.AI3 days ago

arXiv:2511.11502v1 Announce Type: cross Abstract: Large vision-language models (LVLMs) are powerful, yet they remain unreliable due to object hallucinations. In this work, we show that in many hallucinatory predictions the LVLM effectively ignores the image and instead relies on previously generated output (prelim) tokens to infer new objects. We quantify this behavior via the mutual information between the image and the predicted object conditioned on the prelim, demonstrating that weak image dependence strongly correlates with hallucination. Building on this finding, we introduce the Prelim Attention Score (PAS), a lightweight, training-free signal computed from attention weights over prelim tokens. PAS requires no additional forward passes and can be computed on the fly during inference. Exploiting this previously overlooked signal, PAS achieves state-of-the-art object-hallucination detection across multiple models and datasets, enabling real-time filtering and intervention.

#ai
Score · 2.80
Volumetric Ergodic Control
paper
arXiv cs.AI3 days ago

arXiv:2511.11533v1 Announce Type: cross Abstract: Ergodic control synthesizes optimal coverage behaviors over spatial distributions for nonlinear systems. However, existing formulations model the robot as a non-volumetric point, but in practice a robot interacts with the environment through its body and sensors with physical volume. In this work, we introduce a new ergodic control formulation that optimizes spatial coverage using a volumetric state representation. Our method preserves the asymptotic coverage guarantees of ergodic control, adds minimal computational overhead for real-time control, and supports arbitrary sample-based volumetric models. We evaluate our method across search and manipulation tasks -- with multiple robot dynamics and end-effector geometries or sensor models -- and show that it improves coverage efficiency by more than a factor of two while maintaining a 100% task completion rate across all experiments, outperforming the standard ergodic control method. Finally, we demonstrate the effectiveness of our method on a robot arm performing mechanical erasing tasks.

#ai
Score · 2.80
HDW-SR: High-Frequency Guided Diffusion Model based on Wavelet Decomposition for Image Super-Resolution
paper
arXiv cs.CV3 days ago

arXiv:2511.13175v1 Announce Type: new Abstract: Diffusion-based methods have shown great promise in single image super-resolution (SISR); however, existing approaches often produce blurred fine details due to insufficient guidance in the high-frequency domain. To address this issue, we propose a High-Frequency Guided Diffusion Network based on Wavelet Decomposition (HDW-SR), which replaces the conventional U-Net backbone in diffusion frameworks. Specifically, we perform diffusion only on the residual map, allowing the network to focus more effectively on high-frequency information restoration. We then introduce wavelet-based downsampling in place of standard CNN downsampling to achieve multi-scale frequency decomposition, enabling sparse cross-attention between the high-frequency subbands of the pre-super-resolved image and the low-frequency subbands of the diffused image for explicit high-frequency guidance. Moreover, a Dynamic Thresholding Block (DTB) is designed to refine high-frequency selection during the sparse attention process. During upsampling, the invertibility of the wavelet transform ensures low-loss feature reconstruction. Experiments on both synthetic and real-world datasets demonstrate that HDW-SR achieves competitive super-resolution performance, excelling particularly in recovering fine-grained image details. The code will be available after acceptance.

#ai
Score · 2.80
GenTract: Generative Global Tractography
paper
arXiv cs.CV3 days ago

arXiv:2511.13183v1 Announce Type: new Abstract: Tractography is the process of inferring the trajectories of white-matter pathways in the brain from diffusion magnetic resonance imaging (dMRI). Local tractography methods, which construct streamlines by following local fiber orientation estimates stepwise through an image, are prone to error accumulation and high false positive rates, particularly on noisy or low-resolution data. In contrast, global methods, which attempt to optimize a collection of streamlines to maximize compatibility with underlying fiber orientation estimates, are computationally expensive. To address these challenges, we introduce GenTract, the first generative model for global tractography. We frame tractography as a generative task, learning a direct mapping from dMRI to complete, anatomically plausible streamlines. We compare both diffusion-based and flow matching paradigms and evaluate GenTract's performance against state-of-the-art baselines. Notably, GenTract achieves precision 2.1x higher than the next-best method, TractOracle. This advantage becomes even more pronounced in challenging low-resolution and noisy settings, where it outperforms the closest competitor by an order of magnitude. By producing tractograms with high precision on research-grade data while also maintaining reliability on imperfect, lower-resolution data, GenTract represents a promising solution for global tractography.

#ai
#research
Score · 2.80
A Unified Convergence Analysis for Semi-Decentralized Learning: Sampled-to-Sampled vs. Sampled-to-All Communication
paper
arXiv cs.AI3 days ago

arXiv:2511.11560v2 Announce Type: cross Abstract: In semi-decentralized federated learning, devices primarily rely on device-to-device communication but occasionally interact with a central server. Periodically, a sampled subset of devices uploads their local models to the server, which computes an aggregate model. The server can then either (i) share this aggregate model only with the sampled clients (sampled-to-sampled, S2S) or (ii) broadcast it to all clients (sampled-to-all, S2A). Despite their practical significance, a rigorous theoretical and empirical comparison of these two strategies remains absent. We address this gap by analyzing S2S and S2A within a unified convergence framework that accounts for key system parameters: sampling rate, server aggregation frequency, and network connectivity. Our results, both analytical and experimental, reveal distinct regimes where one strategy outperforms the other, depending primarily on the degree of data heterogeneity across devices. These insights lead to concrete design guidelines for practical semi-decentralized FL deployments.

#ai
Score · 2.80
Private Frequency Estimation Via Residue Number Systems
paper
arXiv cs.AI3 days ago

arXiv:2511.11569v2 Announce Type: cross Abstract: We present \textsf{ModularSubsetSelection} (MSS), a new algorithm for locally differentially private (LDP) frequency estimation. Given a universe of size $k$ and $n$ users, our $\varepsilon$-LDP mechanism encodes each input via a Residue Number System (RNS) over $\ell$ pairwise-coprime moduli $m_0, \ldots, m_{\ell-1}$, and reports a randomly chosen index $j \in [\ell]$ along with the perturbed residue using the statistically optimal \textsf{SubsetSelection} (SS) (Wang et al. 2016). This design reduces the user communication cost from $\Theta\bigl(\omega \log_2(k/\omega)\bigr)$ bits required by standard SS (with $\omega \approx k/(e^\varepsilon+1)$) down to $\lceil \log_2 \ell \rceil + \lceil \log_2 m_j \rceil$ bits, where $m_j < k$. Server-side decoding runs in $\Theta(n + r k \ell)$ time, where $r$ is the number of LSMR (Fong and Saunders 2011) iterations. In practice, with well-conditioned moduli (\textit{i.e.}, constant $r$ and $\ell = \Theta(\log k)$), this becomes $\Theta(n + k \log k)$. We prove that MSS achieves worst-case MSE within a constant factor of state-of-the-art protocols such as SS and \textsf{ProjectiveGeometryResponse} (PGR) (Feldman et al. 2022) while avoiding the algebraic prerequisites and dynamic-programming decoder required by PGR. Empirically, MSS matches the estimation accuracy of SS, PGR, and \textsf{RAPPOR} (Erlingsson, Pihur, and Korolova 2014) across realistic $(k, \varepsilon)$ settings, while offering faster decoding than PGR and shorter user messages than SS. Lastly, by sampling from multiple moduli and reporting only a single perturbed residue, MSS achieves the lowest reconstruction-attack success rate among all evaluated LDP protocols.

#ai
#open_source
Score · 2.80
Towards Efficient and Reliable AI Through Neuromorphic Principles
paper
arXiv cs.AI3 days ago

arXiv:2309.15942v2 Announce Type: replace Abstract: Artificial intelligence (AI) research today is largely driven by ever-larger neural network models trained on graphics processing units (GPUs). This paradigm has yielded remarkable progress, but it also risks entrenching a hardware lottery in which algorithmic choices succeed primarily because they align with current hardware, rather than because they are inherently superior. In particular, the dominance of Transformer architectures running on GPU clusters has led to an arms race of scaling up models, resulting in exorbitant computational costs and energy usage. At the same time, today's AI models often remain unreliable in the sense that they cannot properly quantify uncertainty in their decisions -- for example, large language models tend to hallucinate incorrect outputs with high confidence. This article argues that achieving more efficient and reliable AI will require embracing a set of principles that are well-aligned with the goals of neuromorphic engineering, which are in turn inspired by how the brain processes information. Specifically, we outline six key neuromorphic principles, spanning algorithms, architectures, and hardware, that can inform the design of future AI systems: (i) the use of stateful, recurrent models; (ii) extreme dynamic sparsity, possibly down to spike-based processing; (iii) backpropagation-free on-device learning and fine-tuning; (iv) probabilistic decision-making; (v) in-memory computing; and (vi) hardware-software co-design via stochastic computing. We discuss each of these principles in turn, surveying relevant prior work and pointing to directions for research.

#ai
#llm
#research
Score · 2.80
Semantic Web: Past, Present, and Future (with Machine Learning on Knowledge Graphs and Language Models on Knowledge Graphs)
paper
arXiv cs.AI3 days ago

arXiv:2412.17159v2 Announce Type: replace Abstract: Ever since the vision was formulated, the Semantic Web has inspired many generations of innovations. Semantic technologies have been used to share vast amounts of information on the Web, enhance them with semantics to give them meaning, and enable inference and reasoning on them. Throughout the years, semantic technologies, and in particular knowledge graphs, have been used in search engines, data integration, enterprise settings, and machine learning. In this paper, we recap the classical concepts and foundations of the Semantic Web as well as modern and recent concepts and applications, building upon these foundations. The classical topics we cover include knowledge representation, creating and validating knowledge on the Web, reasoning and linking, and distributed querying. We enhance this classical view of the so-called ``Semantic Web Layer Cake'' with an update of recent concepts. These include provenance, security and trust, as well as a discussion of practical impacts from industry-led contributions. We also provide an overiew of shallow and deep machine learning methods for knowledge graphs and discuss the relation of language models and knowledge graphs. We conclude with an outlook on the future directions of the Semantic Web.

#research
Score · 2.80
Large Language Models Meet Extreme Multi-label Classification: Scaling and Multi-modal Framework
paper
arXiv cs.CV3 days ago

arXiv:2511.13189v1 Announce Type: new Abstract: Foundation models have revolutionized artificial intelligence across numerous domains, yet their transformative potential remains largely untapped in Extreme Multi-label Classification (XMC). Queries in XMC are associated with relevant labels from extremely large label spaces, where it is critical to strike a balance between efficiency and performance. Therefore, many recent approaches efficiently pose XMC as a maximum inner product search between embeddings learned from small encoder-only transformer architectures. In this paper, we address two important aspects in XMC: how to effectively harness larger decoder-only models, and how to exploit visual information while maintaining computational efficiency. We demonstrate that both play a critical role in XMC separately and can be combined for improved performance. We show that a few billion-size decoder can deliver substantial improvements while keeping computational overhead manageable. Furthermore, our Vision-enhanced eXtreme Multi-label Learning framework (ViXML) efficiently integrates foundation vision models by pooling a single embedding per image. This limits computational growth while unlocking multi-modal capabilities. Remarkably, ViXML with small encoders outperforms text-only decoder in most cases, showing that an image is worth billions of parameters. Finally, we present an extension of existing text-only datasets to exploit visual metadata and make them available for future benchmarking. Comprehensive experiments across four public text-only datasets and their corresponding image enhanced versions validate our proposals' effectiveness, surpassing previous state-of-the-art by up to +8.21\% in P@1 on the largest dataset. ViXML's code is available at https://github.com/DiegoOrtego/vixml.

#ai
#llm
#research
#product
#open_source
Score · 2.80
Page 59 of 93