Fresh from the feed
Filter by timeframe and category to zero in on the moves that matter.
arXiv:2511.12024v1 Announce Type: new Abstract: State-of-the-art photorealistic reconstructions for lensless cameras often rely on paired lensless-lensed supervision, which can bias models due to lens-lensless domain mismatch. To avoid this, ground-truth-free diffusion priors are attractive; however, generic formulations tuned for conventional inverse problems often break under the noisy, highly multiplexed, and ill-posed lensless deconvolution setting. We observe that methods which separate range-space enforcement from null-space diffusion-prior updates yield stable, realistic reconstructions. Building on this, we introduce Null-Space Diffusion Distillation (NSDD): a single-pass student that distills the null-space component of an iterative DDNM+ solver, conditioned on the lensless measurement and on a range-space anchor. NSDD preserves measurement consistency and achieves photorealistic results without paired supervision at a fraction of the runtime and memory. On Lensless-FFHQ and PhlatCam, NSDD is the second fastest, behind Wiener, and achieves near-teacher perceptual quality (second-best LPIPS, below DDNM+), outperforming DPS and classical convex baselines. These results suggest a practical path toward fast, ground-truth-free, photorealistic lensless imaging.
arXiv:2511.12027v1 Announce Type: new Abstract: Long-video understanding remains a significant challenge for Multimodal Large Language Models (MLLMs) due to inherent token limitations and the complexity of capturing long-term temporal dependencies. Existing methods often fail to capture the global context and complex event relationships necessary for deep video reasoning. To address this, we introduce GCAgent, a novel Global-Context-Aware Agent framework that achieves comprehensive long-video understanding. Our core innovation is the Schematic and Narrative Episodic Memory. This memory structurally models events and their causal and temporal relations into a concise, organized context, fundamentally resolving the long-term dependency problem. Operating in a multi-stage Perception-Action-Reflection cycle, our GCAgent utilizes a Memory Manager to retrieve relevant episodic context for robust, context-aware inference. Extensive experiments confirm that GCAgent significantly enhances long-video understanding, achieving up to 23.5\% accuracy improvement on the Video-MME Long split over a strong MLLM baseline. Furthermore, our framework establishes state-of-the-art performance among comparable 7B-scale MLLMs, achieving 73.4\% accuracy on the Long split and the highest overall average (71.9\%) on the Video-MME benchmark, validating our agent-based reasoning paradigm and structured memory for cognitively-inspired long-video understanding.
arXiv:2511.12030v1 Announce Type: new Abstract: Estimating the 3D poses of hands and objects from a single RGB image is a fundamental yet challenging problem, with broad applications in augmented reality and human-computer interaction. Existing methods largely rely on visual cues alone, often producing results that violate physical constraints such as interpenetration or non-contact. Recent efforts to incorporate physics reasoning typically depend on post-optimization or non-differentiable physics engines, which compromise visual consistency and end-to-end trainability. To overcome these limitations, we propose a novel framework that jointly integrates visual and physical cues for hand-object pose estimation. This integration is achieved through two key ideas: 1) joint visual-physical cue learning: The model is trained to extract 2D visual cues and 3D physical cues, thereby enabling more comprehensive representation learning for hand-object interactions; 2) candidate pose aggregation: A novel refinement process that aggregates multiple diffusion-generated candidate poses by leveraging both visual and physical predictions, yielding a final estimate that is visually consistent and physically plausible. Extensive experiments demonstrate that our method significantly outperforms existing state-of-the-art approaches in both pose accuracy and physical plausibility.
arXiv:2511.12032v1 Announce Type: new Abstract: Masked image generation (MIG) has demonstrated remarkable efficiency and high-fidelity images by enabling parallel token prediction. Existing methods typically rely solely on the model itself to learn semantic dependencies among visual token sequences. However, directly learning such semantic dependencies from data is challenging because the individual tokens lack clear semantic meanings, and these sequences are usually long. To address this limitation, we propose a novel Knowledge-Augmented Masked Image Generation framework, named KA-MIG, which introduces explicit knowledge of token-level semantic dependencies (\emph{i.e.}, extracted from the training data) as priors to learn richer representations for improving performance. In particular, we explore and identify three types of advantageous token knowledge graphs, including two positive and one negative graphs (\emph{i.e.}, the co-occurrence graph, the semantic similarity graph, and the position-token incompatibility graph). Based on three prior knowledge graphs, we design a graph-aware encoder to learn token and position-aware representations. After that, a lightweight fusion mechanism is introduced to integrate these enriched representations into the existing MIG methods. Resorting to such prior knowledge, our method effectively enhances the model's ability to capture semantic dependencies, leading to improved generation quality. Experimental results demonstrate that our method improves upon existing MIG for class-conditional image generation on ImageNet.
arXiv:2511.12040v1 Announce Type: new Abstract: Feed-forward 3D reconstruction from sparse, low-resolution (LR) images is a crucial capability for real-world applications, such as autonomous driving and embodied AI. However, existing methods often fail to recover fine texture details. This limitation stems from the inherent lack of high-frequency information in LR inputs. To address this, we propose \textbf{SRSplat}, a feed-forward framework that reconstructs high-resolution 3D scenes from only a few LR views. Our main insight is to compensate for the deficiency of texture information by jointly leveraging external high-quality reference images and internal texture cues. We first construct a scene-specific reference gallery, generated for each scene using Multimodal Large Language Models (MLLMs) and diffusion models. To integrate this external information, we introduce the \textit{Reference-Guided Feature Enhancement (RGFE)} module, which aligns and fuses features from the LR input images and their reference twin image. Subsequently, we train a decoder to predict the Gaussian primitives using the multi-view fused feature obtained from \textit{RGFE}. To further refine predicted Gaussian primitives, we introduce \textit{Texture-Aware Density Control (TADC)}, which adaptively adjusts Gaussian density based on the internal texture richness of the LR inputs. Extensive experiments demonstrate that our SRSplat outperforms existing methods on various datasets, including RealEstate10K, ACID, and DTU, and exhibits strong cross-dataset and cross-resolution generalization capabilities.
arXiv:2511.12047v1 Announce Type: new Abstract: Medical images exhibit latent anatomical groupings, such as organs, tissues, and pathological regions, that standard Vision Transformers (ViTs) fail to exploit. While recent work like SBM-Transformer attempts to incorporate such structures through stochastic binary masking, they suffer from non-differentiability, training instability, and the inability to model complex community structure. We present DCMM-Transformer, a novel ViT architecture for medical image analysis that incorporates a Degree-Corrected Mixed-Membership (DCMM) model as an additive bias in self-attention. Unlike prior approaches that rely on multiplicative masking and binary sampling, our method introduces community structure and degree heterogeneity in a fully differentiable and interpretable manner. Comprehensive experiments across diverse medical imaging datasets, including brain, chest, breast, and ocular modalities, demonstrate the superior performance and generalizability of the proposed approach. Furthermore, the learned group structure and structured attention modulation substantially enhance interpretability by yielding attention maps that are anatomically meaningful and semantically coherent.
arXiv:2511.12048v1 Announce Type: new Abstract: Deepfakes are major threats to the integrity of digital media. We propose DeiTFake, a DeiT-based transformer and a novel two-stage progressive training strategy with increasing augmentation complexity. The approach applies an initial transfer-learning phase with standard augmentations followed by a fine-tuning phase using advanced affine and deepfake-specific augmentations. DeiT's knowledge distillation model captures subtle manipulation artifacts, increasing robustness of the detection model. Trained on the OpenForensics dataset (190,335 images), DeiTFake achieves 98.71\% accuracy after stage one and 99.22\% accuracy with an AUROC of 0.9997, after stage two, outperforming the latest OpenForensics baselines. We analyze augmentation impact and training schedules, and provide practical benchmarks for facial deepfake detection.
arXiv:2511.12056v1 Announce Type: new Abstract: Video generation has been advancing rapidly, and diffusion transformer (DiT) based models have demonstrated remark- able capabilities. However, their practical deployment is of- ten hindered by slow inference speeds and high memory con- sumption. In this paper, we propose a novel pipelining frame- work named PipeDiT to accelerate video generation, which is equipped with three main innovations. First, we design a pipelining algorithm (PipeSP) for sequence parallelism (SP) to enable the computation of latent generation and commu- nication among multiple GPUs to be pipelined, thus reduc- ing inference latency. Second, we propose DeDiVAE to de- couple the diffusion module and the variational autoencoder (VAE) module into two GPU groups, whose executions can also be pipelined to reduce memory consumption and infer- ence latency. Third, to better utilize the GPU resources in the VAE group, we propose an attention co-processing (Aco) method to further reduce the overall video generation latency. We integrate our PipeDiT into both OpenSoraPlan and Hun- yuanVideo, two state-of-the-art open-source video generation frameworks, and conduct extensive experiments on two 8- GPU systems. Experimental results show that, under many common resolution and timestep configurations, our PipeDiT achieves 1.06x to 4.02x speedups over OpenSoraPlan and HunyuanVideo.
arXiv:2511.12061v1 Announce Type: new Abstract: Trajectory similarity computation is fundamental functionality that is used for, e.g., clustering, prediction, and anomaly detection. However, existing learning-based methods exhibit three key limitations: (1) insufficient modeling of trajectory semantics and hierarchy, lacking both movement dynamics extraction and multi-scale structural representation; (2) high computational costs due to point-wise encoding; and (3) use of physically implausible augmentations that distort trajectory semantics. To address these issues, we propose MovSemCL, a movement-semantics contrastive learning framework for trajectory similarity computation. MovSemCL first transforms raw GPS trajectories into movement-semantics features and then segments them into patches. Next, MovSemCL employs intra- and inter-patch attentions to encode local as well as global trajectory patterns, enabling efficient hierarchical representation and reducing computational costs. Moreover, MovSemCL includes a curvature-guided augmentation strategy that preserves informative segments (e.g., turns and intersections) and masks redundant ones, generating physically plausible augmented views. Experiments on real-world datasets show that MovSemCL is capable of outperforming state-of-the-art methods, achieving mean ranks close to the ideal value of 1 at similarity search tasks and improvements by up to 20.3% at heuristic approximation, while reducing inference latency by up to 43.4%.
arXiv:2511.12066v1 Announce Type: new Abstract: Purple fringing, a persistent artifact caused by Longitudinal Chromatic Aberration (LCA) in camera lenses, has long degraded the clarity and realism of digital imaging. Traditional solutions rely on complex and expensive apochromatic (APO) lens hardware and the extraction of handcrafted features, ignoring the data-driven approach. To fill this gap, we introduce DCA-LUT, the first deep learning framework for purple fringing removal. Inspired by the physical root of the problem, the spatial misalignment of RGB color channels due to lens dispersion, we introduce a novel Chromatic-Aware Coordinate Transformation (CA-CT) module, learning an image-adaptive color space to decouple and isolate fringing into a dedicated dimension. This targeted separation allows the network to learn a precise ``purple fringe channel", which then guides the accurate restoration of the luminance channel. The final color correction is performed by a learned 5D Look-Up Table (5D LUT), enabling efficient and powerful% non-linear color mapping. To enable robust training and fair evaluation, we constructed a large-scale synthetic purple fringing dataset (PF-Synth). Extensive experiments in synthetic and real-world datasets demonstrate that our method achieves state-of-the-art performance in purple fringing removal.
arXiv:2511.12082v1 Announce Type: new Abstract: Multilabel image categorization has drawn interest recently because of its numerous computer vision applications. The proposed work introduces a novel method for classifying multilabel images using the COCO-2014 dataset and a modified ResNet-101 architecture. By simulating label dependencies and uncertainties, the approach uses probabilistic reasoning to improve prediction accuracy. Extensive tests show that the model outperforms earlier techniques and approaches to state-of-the-art outcomes in multilabel categorization. The work also thoroughly assesses the model's performance using metrics like precision-recall score and achieves 0.794 mAP on COCO-2014, outperforming ResNet-SRN (0.771) and Vision Transformer baselines (0.785). The novelty of the work lies in integrating probabilistic reasoning into deep learning models to effectively address the challenges presented by multilabel scenarios.
arXiv:2511.12084v1 Announce Type: new Abstract: Image stitching often faces challenges due to varying capture angles, positional differences, and object movements, leading to misalignments and visual discrepancies. Traditional seam carving methods neglect semantic information, causing disruptions in foreground continuity. We introduce SemanticStitch, a deep learning-based framework that incorporates semantic priors of foreground objects to preserve their integrity and enhance visual coherence. Our approach includes a novel loss function that emphasizes the semantic integrity of salient objects, significantly improving stitching quality. We also present two specialized real-world datasets to evaluate our method's effectiveness. Experimental results demonstrate substantial improvements over traditional techniques, providing robust support for practical applications.
arXiv:2511.12095v1 Announce Type: new Abstract: Event cameras sense brightness changes and output binary asynchronous event streams, attracting increasing attention. Their bio-inspired dynamics align well with spiking neural networks (SNNs), offering a promising energy-efficient alternative to conventional vision systems. However, SNNs remain costly to train due to temporal coding, which limits their practical deployment. To alleviate the high training cost of SNNs, we introduce \textbf{PACE} (Phase-Aligned Condensation for Events), the first dataset distillation framework to SNNs and event-based vision. PACE distills a large training dataset into a compact synthetic one that enables fast SNN training, which is achieved by two core modules: \textbf{ST-DSM} and \textbf{PEQ-N}. ST-DSM uses residual membrane potentials to densify spike-based features (SDR) and to perform fine-grained spatiotemporal matching of amplitude and phase (ST-SM), while PEQ-N provides a plug-and-play straight through probabilistic integer quantizer compatible with standard event-frame pipelines. Across DVS-Gesture, CIFAR10-DVS, and N-MNIST datasets, PACE outperforms existing coreset selection and dataset distillation baselines, with particularly strong gains on dynamic event streams and at low or moderate IPC. Specifically, on N-MNIST, it achieves \(84.4\%\) accuracy, about \(85\%\) of the full training set performance, while reducing training time by more than \(50\times\) and storage cost by \(6000\times\), yielding compact surrogates that enable minute-scale SNN training and efficient edge deployment.
arXiv:2511.12097v1 Announce Type: new Abstract: Brain-inspired Spiking neural networks (SNNs) promise energy-efficient intelligence via event-driven, sparse computation, but deeper architectures inflate parameters and computational cost, hindering their edge deployment. Recent progress in SNN pruning helps alleviate this burden, yet existing efforts fall into only two families: \emph{unstructured} pruning, which attains high sparsity but is difficult to accelerate on general hardware, and \emph{structured} pruning, which eases deployment but lack flexibility and often degrades accuracy at matched sparsity. In this work, we introduce \textbf{SpikeNM}, the first SNN-oriented \emph{semi-structured} \(N{:}M\) pruning framework that learns sparse SNNs \emph{from scratch}, enforcing \emph{at most \(N\)} non-zeros per \(M\)-weight block. To avoid the combinatorial space complexity \(\sum_{k=1}^{N}\binom{M}{k}\) growing exponentially with \(M\), SpikeNM adopts an \(M\)-way basis-logit parameterization with a differentiable top-\(k\) sampler, \emph{linearizing} per-block complexity to \(\mathcal O(M)\) and enabling more aggressive sparsification. Further inspired by neuroscience, we propose \emph{eligibility-inspired distillation} (EID), which converts temporally accumulated credits into block-wise soft targets to align mask probabilities with spiking dynamics, reducing sampling variance and stabilizing search under high sparsity. Experiments show that at \(2{:}4\) sparsity, SpikeNM maintains and even with gains across main-stream datasets, while yielding hardware-amenable patterns that complement intrinsic spike sparsity.
arXiv:2511.12099v1 Announce Type: new Abstract: Recent advancements in diffusion-based video generation have produced impressive and high-fidelity short videos. To extend these successes to generate coherent long videos, most video diffusion models (VDMs) generate videos in an autoregressive manner, i.e., generating subsequent frames conditioned on previous ones. There are generally two primary paradigms: chunk-based extension and stream denoising. The former directly concatenates previous clean frames as conditioning, suffering from denoising latency and error accumulation. The latter maintains the denoising sequence with monotonically increasing noise levels. In each denoising iteration, one clean frame is produced while a new pure noise is simultaneously appended, enabling live-stream sampling. However, it struggles with fragile consistency and poor motion dynamics. In this paper, we propose Adaptive Begin-of-Video Tokens (ada-BOV) for autoregressive VDMs. The BOV tokens are special learnable embeddings on VDMs. They adaptively absorb denoised preceding frames via an adaptive-layer-norm-like modulation. This design preserves the global consistency while allowing for flexible conditioning in dynamic scenarios. To ensure the quality of local dynamics essential in modulating BOV tokens, we further propose a refinement strategy for stream denoising. It decouples the sampling trajectory length from the attention window size constraint, leading to improved local guidance and overall imaging quality. We also propose a disturbance-augmented training noise schedule, which balances the convergence speed with model robustness for the stream denoising. Extensive experiments demonstrate that our method achieves compelling qualitative and quantitative results across multiple metrics.
arXiv:2511.12100v1 Announce Type: new Abstract: In current visual model training, models often rely on only limited sufficient causes for their predictions, which makes them sensitive to distribution shifts or the absence of key features. Attribution methods can accurately identify a model's critical regions. However, masking these areas to create counterfactuals often causes the model to misclassify the target, while humans can still easily recognize it. This divergence highlights that the model's learned dependencies may not be sufficiently causal. To address this issue, we propose Subset-Selected Counterfactual Augmentation (SS-CA), which integrates counterfactual explanations directly into the training process for targeted intervention. Building on the subset-selection-based LIMA attribution method, we develop Counterfactual LIMA to identify minimal spatial region sets whose removal can selectively alter model predictions. Leveraging these attributions, we introduce a data augmentation strategy that replaces the identified regions with natural background, and we train the model jointly on both augmented and original samples to mitigate incomplete causal learning. Extensive experiments across multiple ImageNet variants show that SS-CA improves generalization on in-distribution (ID) test data and achieves superior performance on out-of-distribution (OOD) benchmarks such as ImageNet-R and ImageNet-S. Under perturbations including noise, models trained with SS-CA also exhibit enhanced generalization, demonstrating that our approach effectively uses interpretability insights to correct model deficiencies and improve both performance and robustness.
arXiv:2511.12110v1 Announce Type: new Abstract: Despite the progress in medical image segmentation, most existing methods remain task-specific and lack interactivity. Although recent text-prompt-based segmentation approaches enhance user-driven and reasoning-based segmentation, they remain confined to single-round dialogues and fail to perform multi-round reasoning. In this work, we introduce Multi-Round Entity-Level Medical Reasoning Segmentation (MEMR-Seg), a new task that requires generating segmentation masks through multi-round queries with entity-level reasoning. To support this task, we construct MR-MedSeg, a large-scale dataset of 177K multi-round medical segmentation dialogues, featuring entity-based reasoning across rounds. Furthermore, we propose MediRound, an effective baseline model designed for multi-round medical reasoning segmentation. To mitigate the inherent error propagation in the chain-like pipeline of multi-round segmentation, we introduce a lightweight yet effective Judgment & Correction Mechanism during model inference. Experimental results demonstrate that our method effectively addresses the MEMR-Seg task and outperforms conventional medical referring segmentation methods.
arXiv:2511.12131v1 Announce Type: new Abstract: Large Language Models (LLMs) have become a crucial tool in Visual Question Answering (VQA) for handling knowledge-intensive questions in few-shot or zero-shot scenarios. However, their reliance on massive training datasets often causes them to inherit language biases during the acquisition of knowledge. This limitation imposes two key constraints on existing methods: (1) LLM predictions become less reliable due to bias exploitation, and (2) despite strong knowledge reasoning capabilities, LLMs still struggle with out-of-distribution (OOD) generalization. To address these issues, we propose Object Attribute Description Promoter (OAD-Promoter), a novel approach for enhancing LLM-based VQA by mitigating language bias and improving domain-shift robustness. OAD-Promoter comprises three components: the Object-concentrated Example Generation (OEG) module, the Memory Knowledge Assistance (MKA) module, and the OAD Prompt. The OEG module generates global captions and object-concentrated samples, jointly enhancing visual information input to the LLM and mitigating bias through complementary global and regional visual cues. The MKA module assists the LLM in handling OOD samples by retrieving relevant knowledge from stored examples to support questions from unseen domains. Finally, the OAD Prompt integrates the outputs of the preceding modules to optimize LLM inference. Experiments demonstrate that OAD-Promoter significantly improves the performance of LLM-based VQA methods in few-shot or zero-shot settings, achieving new state-of-the-art results.
arXiv:2511.12136v1 Announce Type: new Abstract: Spiking neural networks (SNNs) communicate via discrete spikes in time rather than continuous activations. Their event-driven nature offers advantages for temporal processing and energy efficiency on resource-constrained hardware, but training and deployment remain challenging. We present a lightweight C-based runtime for SNN inference on edge devices and optimizations that reduce latency and memory without sacrificing accuracy. Trained models exported from SNNTorch are translated to a compact C representation; static, cache-friendly data layouts and preallocation avoid interpreter and allocation overheads. We further exploit sparse spiking activity to prune inactive neurons and synapses, shrinking computation in upstream convolutional layers. Experiments on N-MNIST and ST-MNIST show functional parity with the Python baseline while achieving ~10 speedups on desktop CPU and additional gains with pruning, together with large memory reductions that enable microcontroller deployment (Arduino Portenta H7). Results indicate that SNNs can be executed efficiently on conventional embedded platforms when paired with an optimized runtime and spike-driven model compression. Code: https://github.com/karol-jurzec/snn-generator/
arXiv:2511.12150v1 Announce Type: new Abstract: The integration of event cameras and spiking neural networks (SNNs) promises energy-efficient visual intelligence, yet scarce event data and the sparsity of DVS outputs hinder effective training. Prior knowledge transfers from RGB to DVS often underperform because the distribution gap between modalities is substantial. In this work, we present Time-step Mixup Knowledge Transfer (TMKT), a cross-modal training framework with a probabilistic Time-step Mixup (TSM) strategy. TSM exploits the asynchronous nature of SNNs by interpolating RGB and DVS inputs at various time steps to produce a smooth curriculum within each sequence, which reduces gradient variance and stabilizes optimization with theoretical analysis. To employ auxiliary supervision from TSM, TMKT introduces two lightweight modality-aware objectives, Modality Aware Guidance (MAG) for per-frame source supervision and Mixup Ratio Perception (MRP) for sequence-level mix ratio estimation, which explicitly align temporal features with the mixing schedule. TMKT enables smoother knowledge transfer, helps mitigate modality mismatch during training, and achieves superior performance in spiking image classification tasks. Extensive experiments across diverse benchmarks and multiple SNN backbones, together with ablations, demonstrate the effectiveness of our method.