Fresh from the feed
Filter by timeframe and category to zero in on the moves that matter.
arXiv:2511.10720v1 Announce Type: cross Abstract: Long context LLMs are vulnerable to prompt injection, where an attacker can inject an instruction in a long context to induce an LLM to generate an attacker-desired output. Existing prompt injection defenses are designed for short contexts. When extended to long-context scenarios, they have limited effectiveness. The reason is that an injected instruction constitutes only a very small portion of a long context, making the defense very challenging. In this work, we propose PISanitizer, which first pinpoints and sanitizes potential injected tokens (if any) in a context before letting a backend LLM generate a response, thereby eliminating the influence of the injected instruction. To sanitize injected tokens, PISanitizer builds on two observations: (1) prompt injection attacks essentially craft an instruction that compels an LLM to follow it, and (2) LLMs intrinsically leverage the attention mechanism to focus on crucial input tokens for output generation. Guided by these two observations, we first intentionally let an LLM follow arbitrary instructions in a context and then sanitize tokens receiving high attention that drive the instruction-following behavior of the LLM. By design, PISanitizer presents a dilemma for an attacker: the more effectively an injected instruction compels an LLM to follow it, the more likely it is to be sanitized by PISanitizer. Our extensive evaluation shows that PISanitizer can successfully prevent prompt injection, maintain utility, outperform existing defenses, is efficient, and is robust to optimization-based and strong adaptive attacks. The code is available at https://github.com/sleeepeer/PISanitizer.
arXiv:2511.10761v1 Announce Type: cross Abstract: Gradient-based optimization of engineering designs is limited by non-differentiable components in the typical computer-aided engineering (CAE) workflow, which calculates performance metrics from design parameters. While gradient-based methods could provide noticeable speed-ups in high-dimensional design spaces, codes for meshing, physical simulations, and other common components are not differentiable even if the math or physics underneath them is. We propose replacing non-differentiable pipeline components with surrogate models which are inherently differentiable. Using a toy example of aerodynamic shape optimization, we demonstrate an end-to-end differentiable pipeline where a 3D U-Net full-field surrogate replaces both meshing and simulation steps by training it on the mapping between the signed distance field (SDF) of the shape and the fields of interest. This approach enables gradient-based shape optimization without the need for differentiable solvers, which can be useful in situations where adjoint methods are unavailable and/or hard to implement.
arXiv:2511.12002v1 Announce Type: cross Abstract: A challenge in fine-tuning text-to-image diffusion models for specific topics is to select good examples. Fine-tuning from image sets of varying quality, such as Wikipedia Commons, will often produce poor output. However, training images that \textit{do} exemplify the target concept (e.g., a \textit{female Mountain Bluebird}) help ensure that the generated images are similarly representative (e.g., have the prototypical blue-wings and gray chest). In this work, we propose QZLoRA, a framework to select images for low-rank adaptation (LoRA). The approach leverages QuizRank, a method to automatically rank images by treating them as an `educational intervention' and `quizzing' a VLM. We demonstrate that QZLoRA can produce better aligned, photorealistic images with fewer samples. We also show that these fine-tuned models can produce stylized that are similarly representative (i.e., illustrations). Our results highlight the promise of combining automated visual reasoning with parameter-efficient fine-tuning for topic-adaptive generative modeling.
arXiv:2511.10846v1 Announce Type: cross Abstract: Automated emotion detection is widely used in applications ranging from well-being monitoring to high-stakes domains like mental health and hiring. However, models often rely on annotations that reflect dominant cultural norms, limiting model ability to recognize emotional expression in dialects often excluded from training data distributions, such as African American Vernacular English (AAVE). This study examines emotion recognition model performance on AAVE compared to General American English (GAE). We analyze 2.7 million tweets geo-tagged within Los Angeles. Texts are scored for strength of AAVE using computational approximations of dialect features. Annotations of emotion presence and intensity are collected on a dataset of 875 tweets with both high and low AAVE densities. To assess model accuracy on a task as subjective as emotion perception, we calculate community-informed "silver" labels where AAVE-dense tweets are labeled by African American, AAVE-fluent (ingroup) annotators. On our labeled sample, GPT and BERT-based models exhibit false positive prediction rates of anger on AAVE more than double than on GAE. SpanEmo, a popular text-based emotion model, increases false positive rates of anger from 25 percent on GAE to 60 percent on AAVE. Additionally, a series of linear regressions reveals that models and non-ingroup annotations are significantly more correlated with profanity-based AAVE features than ingroup annotations. Linking Census tract demographics, we observe that neighborhoods with higher proportions of African American residents are associated with higher predictions of anger (Pearson's correlation r = 0.27) and lower joy (r = -0.10). These results find an emergent safety issue of emotion AI reinforcing racial stereotypes through biased emotion classification. We emphasize the need for culturally and dialect-informed affective computing systems.
arXiv:2511.10860v1 Announce Type: cross Abstract: Unit testing in High-Performance Computing (HPC) is critical but challenged by parallelism, complex algorithms, and diverse hardware. Traditional methods often fail to address non-deterministic behavior and synchronization issues in HPC applications. This paper introduces HPCAgentTester, a novel multi-agent Large Language Model (LLM) framework designed to automate and enhance unit test generation for HPC software utilizing OpenMP and MPI. HPCAgentTester employs a unique collaborative workflow where specialized LLM agents (Recipe Agent and Test Agent) iteratively generate and refine test cases through a critique loop. This architecture enables the generation of context-aware unit tests that specifically target parallel execution constructs, complex communication patterns, and hierarchical parallelism. We demonstrate HPCAgentTester's ability to produce compilable and functionally correct tests for OpenMP and MPI primitives, effectively identifying subtle bugs that are often missed by conventional techniques. Our evaluation shows that HPCAgentTester significantly improves test compilation rates and correctness compared to standalone LLMs, offering a more robust and scalable solution for ensuring the reliability of parallel software systems.
arXiv:2511.10861v1 Announce Type: cross Abstract: Convolutional Neural Networks (CNNs) are widely used in image recognition and have succeeded in various domains. CNN models have become larger-scale to improve accuracy and generalization performance. Research has been conducted on compressing pre-trained models for specific target applications in environments with limited computing resources. Among model compression techniques, methods using Layer-wise Relevance Propagation (LRP), an explainable AI technique, have shown promise by achieving high pruning rates while preserving accuracy, even without fine-tuning. Because these methods do not require fine-tuning, they are suited to scenarios with limited data. However, existing LRP-based pruning approaches still suffer from significant accuracy degradation, limiting their practical usability. This study proposes a pruning method that achieves a higher pruning rate while preserving better model accuracy. Our approach to pruning with a small amount of data has achieved pruning that preserves accuracy better than existing methods.
arXiv:2511.10892v1 Announce Type: cross Abstract: Multimodal emotion recognition plays a key role in many domains, including mental health monitoring, educational interaction, and human-computer interaction. However, existing methods often face three major challenges: unbalanced category distribution, the complexity of dynamic facial action unit time modeling, and the difficulty of feature fusion due to modal heterogeneity. With the explosive growth of multimodal data in social media scenarios, the need for building an efficient cross-modal fusion framework for emotion recognition is becoming increasingly urgent. To this end, this paper proposes Multimodal Cross-Attention Network and Contrastive Learning (MCN-CL) for multimodal emotion recognition. It uses a triple query mechanism and hard negative mining strategy to remove feature redundancy while preserving important emotional cues, effectively addressing the issues of modal heterogeneity and category imbalance. Experiment results on the IEMOCAP and MELD datasets show that our proposed method outperforms state-of-the-art approaches, with Weighted F1 scores improving by 3.42% and 5.73%, respectively.
arXiv:2511.10896v1 Announce Type: cross Abstract: Despite remarkable advancements in supervised pansharpening neural networks, these methods face domain adaptation challenges of resolution due to the intrinsic disparity between simulated reduced-resolution training data and real-world full-resolution scenarios.To bridge this gap, we propose an unsupervised pansharpening framework, CLIPPan, that enables model training at full resolution directly by taking CLIP, a visual-language model, as a supervisor. However, directly applying CLIP to supervise pansharpening remains challenging due to its inherent bias toward natural images and limited understanding of pansharpening tasks. Therefore, we first introduce a lightweight fine-tuning pipeline that adapts CLIP to recognize low-resolution multispectral, panchromatic, and high-resolution multispectral images, as well as to understand the pansharpening process. Then, building on the adapted CLIP, we formulate a novel \textit{loss integrating semantic language constraints}, which aligns image-level fusion transitions with protocol-aligned textual prompts (e.g., Wald's or Khan's descriptions), thus enabling CLIPPan to use language as a powerful supervisory signal and guide fusion learning without ground truth. Extensive experiments demonstrate that CLIPPan consistently improves spectral and spatial fidelity across various pansharpening backbones on real-world datasets, setting a new state of the art for unsupervised full-resolution pansharpening.
arXiv:2511.10912v1 Announce Type: cross Abstract: Large language models (LLMs) have demonstrated capabilities across diverse domains, yet their performance on rare disease diagnosis from narrative medical cases remains underexplored. We introduce a novel dataset of 176 symptom-diagnosis pairs extracted from House M.D., a medical television series validated for teaching rare disease recognition in medical education. We evaluate four state-of-the-art LLMs such as GPT 4o mini, GPT 5 mini, Gemini 2.5 Flash, and Gemini 2.5 Pro on narrative-based diagnostic reasoning tasks. Results show significant variation in performance, ranging from 16.48% to 38.64% accuracy, with newer model generations demonstrating a 2.3 times improvement. While all models face substantial challenges with rare disease diagnosis, the observed improvement across architectures suggests promising directions for future development. Our educationally validated benchmark establishes baseline performance metrics for narrative medical reasoning and provides a publicly accessible evaluation framework for advancing AI-assisted diagnosis research.
arXiv:2511.10936v1 Announce Type: cross Abstract: Graph unlearning has emerged as a promising solution for complying with "the right to be forgotten" regulations by enabling the removal of sensitive information upon request. However, this solution is not foolproof. The involvement of multiple parties creates new attack surfaces, and residual traces of deleted data can still remain in the unlearned graph neural networks. These vulnerabilities can be exploited by attackers to recover the supposedly erased samples, thereby undermining the inherent functionality of graph unlearning. In this work, we propose GraphToxin, the first graph reconstruction attack against graph unlearning. Specifically, we introduce a novel curvature matching module to provide a fine-grained guidance for full unlearned graph recovery. We demonstrate that GraphToxin can successfully subvert the regulatory guarantees expected from graph unlearning - it can recover not only a deleted individual's information and personal links but also sensitive content from their connections, thereby posing substantially more detrimental threats. Furthermore, we extend GraphToxin to multiple node removals under both white-box and black-box setting. We highlight the necessity of a worst-case analysis and propose a comprehensive evaluation framework to systematically assess the attack performance under both random and worst-case node removals. This provides a more robust and realistic measure of the vulnerability of graph unlearning methods to graph reconstruction attacks. Our extensive experiments demonstrate the effectiveness and flexibility of GraphToxin. Notably, we show that existing defense mechanisms are largely ineffective against this attack and, in some cases, can even amplify its performance. Given the severe privacy risks posed by GraphToxin, our work underscores the urgent need for the development of more effective and robust defense strategies against this attack.
arXiv:2511.10958v1 Announce Type: cross Abstract: Dynamic facial expression recognition (DFER) aims to identify emotional states by modeling the temporal changes in facial movements across video sequences. A key challenge in DFER is the many-to-one labeling problem, where a video composed of numerous frames is assigned a single emotion label. A common strategy to mitigate this issue is to formulate DFER as a Multiple Instance Learning (MIL) problem. However, MIL-based approaches inherently suffer from the visual diversity of emotional expressions and the complexity of temporal dynamics. To address this challenge, we propose TG-DFER, a text-guided weakly supervised framework that enhances MIL-based DFER by incorporating semantic guidance and coherent temporal modeling. We incorporate a vision-language pre-trained (VLP) model is integrated to provide semantic guidance through fine-grained textual descriptions of emotional context. Furthermore, we introduce visual prompts, which align enriched textual emotion labels with visual instance features, enabling fine-grained reasoning and frame-level relevance estimation. In addition, a multi-grained temporal network is designed to jointly capture short-term facial dynamics and long-range emotional flow, ensuring coherent affective understanding across time. Extensive results demonstrate that TG-DFER achieves improved generalization, interpretability, and temporal sensitivity under weak supervision.
arXiv:2511.11162v1 Announce Type: cross Abstract: The Dual Diffusion Implicit Bridge (DDIB) is an emerging image-to-image (I2I) translation method that preserves cycle consistency while achieving strong flexibility. It links two independently trained diffusion models (DMs) in the source and target domains by first adding noise to a source image to obtain a latent code, then denoising it in the target domain to generate the translated image. However, this method faces two key challenges: (1) low translation efficiency, and (2) translation trajectory deviations caused by mismatched latent distributions. To address these issues, we propose a novel I2I translation framework, OT-ALD, grounded in optimal transport (OT) theory, which retains the strengths of DDIB-based approach. Specifically, we compute an OT map from the latent distribution of the source domain to that of the target domain, and use the mapped distribution as the starting point for the reverse diffusion process in the target domain. Our error analysis confirms that OT-ALD eliminates latent distribution mismatches. Moreover, OT-ALD effectively balances faster image translation with improved image quality. Experiments on four translation tasks across three high-resolution datasets show that OT-ALD improves sampling efficiency by 20.29% and reduces the FID score by 2.6 on average compared to the top-performing baseline models.
arXiv:2511.11240v1 Announce Type: cross Abstract: Split Federated Learning (SFL) is an emerging paradigm for privacy-preserving distributed learning. However, it remains vulnerable to sophisticated data poisoning attacks targeting local features, labels, smashed data, and model weights. Existing defenses, primarily adapted from traditional Federated Learning (FL), are less effective under SFL due to limited access to complete model updates. This paper presents HealSplit, the first unified defense framework tailored for SFL, offering end-to-end detection and recovery against five sophisticated types of poisoning attacks. HealSplit comprises three key components: (1) a topology-aware detection module that constructs graphs over smashed data to identify poisoned samples via topological anomaly scoring (TAS); (2) a generative recovery pipeline that synthesizes semantically consistent substitutes for detected anomalies, validated by a consistency validation student; and (3) an adversarial multi-teacher distillation framework trains the student using semantic supervision from a Vanilla Teacher and anomaly-aware signals from an Anomaly-Influence Debiasing (AD) Teacher, guided by the alignment between topological and gradient-based interaction matrices. Extensive experiments on four benchmark datasets demonstrate that HealSplit consistently outperforms ten state-of-the-art defenses, achieving superior robustness and defense effectiveness across diverse attack scenarios.
arXiv:2511.11265v1 Announce Type: cross Abstract: Software quality research increasingly relies on large-scale datasets that measure both the product and process aspects of software systems. However, existing resources often focus on limited dimensions, such as code smells, technical debt, or refactoring activity, thereby restricting comprehensive analyses across time and quality dimensions. To address this gap, we present the Software Quality Dataset (SQuaD), a multi-dimensional, time-aware collection of software quality metrics extracted from 450 mature open-source projects across diverse ecosystems, including Apache, Mozilla, FFmpeg, and the Linux kernel. By integrating nine state-of-the-art static analysis tools, i.e., SonarQube, CodeScene, PMD, Understand, CK, JaSoMe, RefactoringMiner, RefactoringMiner++, and PyRef, our dataset unifies over 700 unique metrics at method, class, file, and project levels. Covering a total of 63,586 analyzed project releases, SQuaD also provides version control and issue-tracking histories, software vulnerability data (CVE/CWE), and process metrics proven to enhance Just-In-Time (JIT) defect prediction. The SQuaD enables empirical research on maintainability, technical debt, software evolution, and quality assessment at unprecedented scale. We also outline emerging research directions, including automated dataset updates and cross-project quality modeling to support the continuous evolution of software analytics. The dataset is publicly available on ZENODO (DOI: 10.5281/zenodo.17566690).
arXiv:2511.11286v1 Announce Type: cross Abstract: Out-of-domain (OOD) robustness is challenging to achieve in real-world computer vision applications, where shifts in image background, style, and acquisition instruments always degrade model performance. Generic augmentations show inconsistent gains under such shifts, whereas dataset-specific augmentations require expert knowledge and prior analysis. Moreover, prior studies show that neural networks adapt poorly to domain shifts because they exhibit a learning bias to domain-specific frequency components. Perturbing frequency values can mitigate such bias but overlooks pixel-level details, leading to suboptimal performance. To address these problems, we propose D-GAP (Dataset-agnostic and Gradient-guided augmentation in Amplitude and Pixel spaces), improving OOD robustness by introducing targeted augmentation in both the amplitude space (frequency space) and pixel space. Unlike conventional handcrafted augmentations, D-GAP computes sensitivity maps in the frequency space from task gradients, which reflect how strongly the model responds to different frequency components, and uses the maps to adaptively interpolate amplitudes between source and target samples. This way, D-GAP reduces the learning bias in frequency space, while a complementary pixel-space blending procedure restores fine spatial details. Extensive experiments on four real-world datasets and three domain-adaptation benchmarks show that D-GAP consistently outperforms both generic and dataset-specific augmentations, improving average OOD performance by +5.3% on real-world datasets and +1.8% on benchmark datasets.
arXiv:2511.11558v1 Announce Type: cross Abstract: Autonomous laboratories typically rely on data-driven decision-making, occasionally with human-in-the-loop oversight to inject domain expertise. Fully leveraging AI agents, however, requires tightly coupled, collaborative workflows spanning hypothesis generation, experimental planning, execution, and interpretation. To address this, we develop and deploy a human-AI collaborative (HAIC) workflow that integrates large language models for hypothesis generation and analysis, with collaborative policy updates driving autonomous pulsed laser deposition (PLD) experiments for remote epitaxy of BaTiO$_3$/graphene. HAIC accelerated the hypothesis formation and experimental design and efficiently mapped the growth space to graphene-damage. In situ Raman spectroscopy reveals that chemistry drives degradation while the highest energy plume components seed defects, identifying a low-O$_2$ pressure low-temperature synthesis window that preserves graphene but is incompatible with optimal BaTiO$_3$ growth. Thus, we show a two-step Ar/O$_2$ deposition is required to exfoliate ferroelectric BaTiO$_3$ while maintaining a monolayer graphene interlayer. HAIC stages human insight with AI reasoning between autonomous batches to drive rapid scientific progress, providing an evolution to many existing human-in-the-loop autonomous workflows.
arXiv:2410.19238v4 Announce Type: replace Abstract: We introduce a methodology for assigning quantifiable and psychometrically validated personalities to AI-Agents using the Big Five framework. Across three studies, we evaluate its feasibility and limitations. In Study 1, we show that large language models (LLMs) capture semantic similarities among Big Five measures, providing a basis for personality assignment. In Study 2, we create AI-Agents using prompts designed based on the Big Five Inventory-2 (BFI-2) in different format, and find that AI-Agents powered by new models align more closely with human responses on the Mini-Markers test, although the finer pattern of results (e.g., factor loading patterns) were sometimes inconsistent. In Study 3, we validate our AI-Agents on risk-taking and moral dilemma vignettes, finding that models prompted with the BFI-2-Expanded format most closely reproduce human personality-decision associations, while safety-aligned models generally inflate 'moral' ratings. Overall, our results show that AI-Agents align with humans in correlations between input Big Five traits and output responses and may serve as useful tools for preliminary research. Nevertheless, discrepancies in finer response patterns indicate that AI-Agents cannot (yet) fully substitute for human participants in precision or high-stakes projects.
arXiv:2412.18890v2 Announce Type: replace Abstract: The discovery of symbolic solutions -- mathematical expressions, logical rules, and algorithmic structures -- is fundamental to advancing scientific and engineering progress. However, traditional methods often struggle with search efficiency and fail to integrate knowledge effectively. While recent large language model-based (LLM-based) approaches have demonstrated improvements in search efficiency, they lack the ability to continually refine and expand upon discovered solutions and their underlying knowledge, limiting their potential for open-ended innovation. To address these limitations, we introduce CoEvo, a novel framework that leverages large language models within an evolutionary search methodology to continually generate and refine symbolic solutions. CoEvo integrates a dynamic knowledge library, enabling open-ended innovation of solutions through effective knowledge management. Additionally, CoEvo leverages multiple representations of solutions -- including natural language, mathematical expressions, and code -- to further enhance search efficiency. By combining the reasoning capabilities of LLMs with the exploratory power of evolutionary algorithms, CoEvo significantly improves the efficiency and scope of symbolic discovery. Our experimental results demonstrate that this method not only enhances the efficiency of searching for symbolic solutions but also supports the ongoing discovery process, akin to human scientific endeavors. This study represents a first effort in conceptualizing the search for symbolic solutions as a lifelong, iterative process, marking a significant step towards harnessing LLMs in the perpetual pursuit of scientific and engineering breakthroughs. Our code is available at https://github.com/pgg3/CoEvo.
arXiv:2507.14642v2 Announce Type: replace Abstract: Story point estimation is an essential part of agile software development. Story points are unitless, project-specific effort estimates that help developers plan their sprints. Traditionally, developers estimate story points collaboratively using planning poker or other manual techniques. While the initial calibrating of the estimates to each project is helpful, once a team has converged on a set of precedents, story point estimation can become tedious and labor-intensive. Machine learning can reduce this burden, but only with enough context from the historical decisions made by the project team. That is, state-of-the-art models, such as GPT2SP and FastText-SVM, only make accurate predictions (within-project) when trained on data from the same project. The goal of this work is to streamline story point estimation by evaluating a comparative learning-based framework for calibrating project-specific story point prediction models. Instead of assigning a specific story point value to every backlog item, developers are presented with pairs of items, and indicate which item requires more effort. Using these comparative judgments, a machine learning model is trained to predict the story point estimates. We empirically evaluated our technique using data with 23,313 manual estimates in 16 projects. The model learned from comparative judgments can achieve on average 0.34 Spearman's rank correlation coefficient between its predictions and the ground truth story points. This is similar to, if not better than, the performance of a regression model learned from the ground truth story points. Therefore, the proposed comparative learning approach is more efficient than state-of-the-art regression-based approaches according to the law of comparative judgments - providing comparative judgments yields a lower cognitive burden on humans than providing ratings or categorical labels.
arXiv:2510.26023v2 Announce Type: replace Abstract: Despite significant advancements in recent decades, autonomous vehicles (AVs) continue to face challenges in navigating certain traffic scenarios where human drivers excel. In such situations, AVs often become immobilized, disrupting overall traffic flow. Current recovery solutions, such as remote intervention (which is costly and inefficient) and manual takeover (which excludes non-drivers and limits AV accessibility), are inadequate. This paper introduces StuckSolver, a novel Large Language Model (LLM) driven recovery framework that enables AVs to resolve immobilization scenarios through self-reasoning and/or passenger-guided decision-making. StuckSolver is designed as a plug-in add-on module that operates on top of the AV's existing perception-planning-control stack, requiring no modification to its internal architecture. Instead, it interfaces with standard sensor data streams to detect immobilization states, interpret environmental context, and generate high-level recovery commands that can be executed by the AV's native planner. We evaluate StuckSolver on the Bench2Drive benchmark and in custom-designed uncertainty scenarios. Results show that StuckSolver achieves near-state-of-the-art performance through autonomous self-reasoning alone and exhibits further improvements when passenger guidance is incorporated.