Latest

Fresh from the feed

Filter by timeframe and category to zero in on the moves that matter.

DoSReMC: Domain Shift Resilient Mammography Classification using Batch Normalization Adaptation
paper
arXiv cs.CV3 days ago

arXiv:2508.15452v2 Announce Type: replace-cross Abstract: Numerous deep learning-based solutions have been developed for the automatic recognition of breast cancer using mammography images. However, their performance often declines when applied to data from different domains, primarily due to domain shift - the variation in data distributions between source and target domains. This performance drop limits the safe and equitable deployment of AI in real-world clinical settings. In this study, we present DoSReMC (Domain Shift Resilient Mammography Classification), a batch normalization (BN) adaptation framework designed to enhance cross-domain generalization without retraining the entire model. Using three large-scale full-field digital mammography (FFDM) datasets - including HCTP, a newly introduced, pathologically confirmed in-house dataset - we conduct a systematic cross-domain evaluation with convolutional neural networks (CNNs). Our results demonstrate that BN layers are a primary source of domain dependence: they perform effectively when training and testing occur within the same domain, and they significantly impair model generalization under domain shift. DoSReMC addresses this limitation by fine-tuning only the BN and fully connected (FC) layers, while preserving pretrained convolutional filters. We further integrate this targeted adaptation with an adversarial training scheme, yielding additional improvements in cross-domain generalizability while reducing the computational cost of model training. DoSReMC can be readily incorporated into existing AI pipelines and applied across diverse clinical environments, providing a practical pathway toward more robust and generalizable mammography classification systems.

#ai
#research
Score · 2.80
MASt3R-Fusion: Integrating Feed-Forward Visual Model with IMU, GNSS for High-Functionality SLAM
paper
arXiv cs.CV3 days ago

arXiv:2509.20757v3 Announce Type: replace-cross Abstract: Visual SLAM is a cornerstone technique in robotics, autonomous driving and extended reality (XR), yet classical systems often struggle with low-texture environments, scale ambiguity, and degraded performance under challenging visual conditions. Recent advancements in feed-forward neural network-based pointmap regression have demonstrated the potential to recover high-fidelity 3D scene geometry directly from images, leveraging learned spatial priors to overcome limitations of traditional multi-view geometry methods. However, the widely validated advantages of probabilistic multi-sensor information fusion are often discarded in these pipelines. In this work, we propose MASt3R-Fusion,a multi-sensor-assisted visual SLAM framework that tightly integrates feed-forward pointmap regression with complementary sensor information, including inertial measurements and GNSS data. The system introduces Sim(3)-based visualalignment constraints (in the Hessian form) into a universal metric-scale SE(3) factor graph for effective information fusion. A hierarchical factor graph design is developed, which allows both real-time sliding-window optimization and global optimization with aggressive loop closures, enabling real-time pose tracking, metric-scale structure perception and globally consistent mapping. We evaluate our approach on both public benchmarks and self-collected datasets, demonstrating substantial improvements in accuracy and robustness over existing visual-centered multi-sensor SLAM systems. The code will be released open-source to support reproducibility and further research (https://github.com/GREAT-WHU/MASt3R-Fusion).

#ai
#research
#product
#open_source
Score · 2.80
Dedelayed: Deleting remote inference delay via on-device correction
paper
arXiv cs.CV3 days ago

arXiv:2510.13714v2 Announce Type: replace-cross Abstract: Video comprises the vast majority of bits that are generated daily, and is the primary signal driving current innovations in robotics, remote sensing, and wearable technology. Yet, the most powerful video understanding models are too expensive for the resource-constrained platforms used in these applications. One approach is to offload inference to the cloud; this gives access to GPUs capable of processing high-resolution videos in real time. But even with reliable, high-bandwidth communication channels, the combined latency of video encoding, model inference, and round-trip communication prohibits use for certain real-time applications. The alternative is to use fully local inference; but this places extreme constraints on computational and power costs, requiring smaller models and lower resolution, leading to degraded accuracy. To address these challenges, we propose Dedelayed, a real-time inference system that divides computation between a remote model operating on delayed video frames and a local model with access to the current frame. The remote model is trained to make predictions on anticipated future frames, which the local model incorporates into its prediction for the current frame. The local and remote models are jointly optimized with an autoencoder that limits the transmission bitrate required by the available downlink communication channel. We evaluate Dedelayed on the task of real-time streaming video segmentation using the BDD100k driving dataset. For a round trip delay of 100 ms, Dedelayed improves performance by 6.4 mIoU compared to fully local inference and 9.8 mIoU compared to remote inference -- an equivalent improvement to using a model ten times larger.

#ai
Score · 2.80
Ada-FCN: Adaptive Frequency-Coupled Network for fMRI-Based Brain Disorder Classification
paper
arXiv cs.CV3 days ago

arXiv:2511.04718v2 Announce Type: replace-cross Abstract: Resting-state fMRI has become a valuable tool for classifying brain disorders and constructing brain functional connectivity networks by tracking BOLD signals across brain regions. However, existing mod els largely neglect the multi-frequency nature of neuronal oscillations, treating BOLD signals as monolithic time series. This overlooks the cru cial fact that neurological disorders often manifest as disruptions within specific frequency bands, limiting diagnostic sensitivity and specificity. While some methods have attempted to incorporate frequency informa tion, they often rely on predefined frequency bands, which may not be optimal for capturing individual variability or disease-specific alterations. To address this, we propose a novel framework featuring Adaptive Cas cade Decomposition to learn task-relevant frequency sub-bands for each brain region and Frequency-Coupled Connectivity Learning to capture both intra- and nuanced cross-band interactions in a unified functional network. This unified network informs a novel message-passing mecha nism within our Unified-GCN, generating refined node representations for diagnostic prediction. Experimental results on the ADNI and ABIDE datasets demonstrate superior performance over existing methods. The code is available at https://github.com/XXYY20221234/Ada-FCN.

#ai
#open_source
Score · 2.80
Class-feature Watermark: A Resilient Black-box Watermark Against Model Extraction Attacks
paper
arXiv cs.CV3 days ago

arXiv:2511.07947v2 Announce Type: replace-cross Abstract: Machine learning models constitute valuable intellectual property, yet remain vulnerable to model extraction attacks (MEA), where adversaries replicate their functionality through black-box queries. Model watermarking counters MEAs by embedding forensic markers for ownership verification. Current black-box watermarks prioritize MEA survival through representation entanglement, yet inadequately explore resilience against sequential MEAs and removal attacks. Our study reveals that this risk is underestimated because existing removal methods are weakened by entanglement. To address this gap, we propose Watermark Removal attacK (WRK), which circumvents entanglement constraints by exploiting decision boundaries shaped by prevailing sample-level watermark artifacts. WRK effectively reduces watermark success rates by at least 88.79% across existing watermarking benchmarks. For robust protection, we propose Class-Feature Watermarks (CFW), which improve resilience by leveraging class-level artifacts. CFW constructs a synthetic class using out-of-domain samples, eliminating vulnerable decision boundaries between original domain samples and their artifact-modified counterparts (watermark samples). CFW concurrently optimizes both MEA transferability and post-MEA stability. Experiments across multiple domains show that CFW consistently outperforms prior methods in resilience, maintaining a watermark success rate of at least 70.15% in extracted models even under the combined MEA and WRK distortion, while preserving the utility of protected models.

#ai
#research
Score · 2.80
EgoEMS: A High-Fidelity Multimodal Egocentric Dataset for Cognitive Assistance in Emergency Medical Services
paper
arXiv cs.CV3 days ago

arXiv:2511.09894v2 Announce Type: replace-cross Abstract: Emergency Medical Services (EMS) are critical to patient survival in emergencies, but first responders often face intense cognitive demands in high-stakes situations. AI cognitive assistants, acting as virtual partners, have the potential to ease this burden by supporting real-time data collection and decision making. In pursuit of this vision, we introduce EgoEMS, the first end-to-end, high-fidelity, multimodal, multiperson dataset capturing over 20 hours of realistic, procedural EMS activities from an egocentric view in 233 simulated emergency scenarios performed by 62 participants, including 46 EMS professionals. Developed in collaboration with EMS experts and aligned with national standards, EgoEMS is captured using an open-source, low-cost, and replicable data collection system and is annotated with keysteps, timestamped audio transcripts with speaker diarization, action quality metrics, and bounding boxes with segmentation masks. Emphasizing realism, the dataset includes responder-patient interactions reflecting real-world emergency dynamics. We also present a suite of benchmarks for real-time multimodal keystep recognition and action quality estimation, essential for developing AI support tools for EMS. We hope EgoEMS inspires the research community to push the boundaries of intelligent EMS systems and ultimately contribute to improved patient outcomes.

#ai
#research
Score · 2.80
Unsupervised Motion-Compensated Decomposition for Cardiac MRI Reconstruction via Neural Representation
paper
arXiv cs.CV3 days ago

arXiv:2511.11436v2 Announce Type: replace-cross Abstract: Cardiac magnetic resonance (CMR) imaging is widely used to characterize cardiac morphology and function. To accelerate CMR imaging, various methods have been proposed to recover high-quality spatiotemporal CMR images from highly undersampled k-t space data. However, current CMR reconstruction techniques either fail to achieve satisfactory image quality or are restricted by the scarcity of ground truth data, leading to limited applicability in clinical scenarios. In this work, we proposed MoCo-INR, a new unsupervised method that integrates implicit neural representations (INR) with the conventional motion-compensated (MoCo) framework. Using explicit motion modeling and the continuous prior of INRs, MoCo-INR can produce accurate cardiac motion decomposition and high-quality CMR reconstruction. Furthermore, we introduce a new INR network architecture tailored to the CMR problem, which significantly stabilizes model optimization. Experiments on retrospective (simulated) datasets demonstrate the superiority of MoCo-INR over state-of-the-art methods, achieving fast convergence and fine-detailed reconstructions at ultra-high acceleration factors (e.g., 20x in VISTA sampling). Additionally, evaluations on prospective (real-acquired) free-breathing CMR scans highlight the clinical practicality of MoCo-INR for real-time imaging. Several ablation studies further confirm the effectiveness of the critical components of MoCo-INR.

#ai
Score · 2.80
FreDN: Spectral Disentanglement for Time Series Forecasting via Learnable Frequency Decomposition
paper
arXiv stat.ML3 days ago

arXiv:2511.11817v1 Announce Type: new Abstract: Time series forecasting is essential in a wide range of real world applications. Recently, frequency-domain methods have attracted increasing interest for their ability to capture global dependencies. However, when applied to non-stationary time series, these methods encounter the $\textit{spectral entanglement}$ and the computational burden of complex-valued learning. The $\textit{spectral entanglement}$ refers to the overlap of trends, periodicities, and noise across the spectrum due to $\textit{spectral leakage}$ and the presence of non-stationarity. However, existing decompositions are not suited to resolving spectral entanglement. To address this, we propose the Frequency Decomposition Network (FreDN), which introduces a learnable Frequency Disentangler module to separate trend and periodic components directly in the frequency domain. Furthermore, we propose a theoretically supported ReIm Block to reduce the complexity of complex-valued operations while maintaining performance. We also re-examine the frequency-domain loss function and provide new theoretical insights into its effectiveness. Extensive experiments on seven long-term forecasting benchmarks demonstrate that FreDN outperforms state-of-the-art methods by up to 10\%. Furthermore, compared with standard complex-valued architectures, our real-imaginary shared-parameter design reduces the parameter count and computational cost by at least 50\%.

#ai
Score · 2.80
PCA recovery thresholds in low-rank matrix inference with sparse noise
paper
arXiv stat.ML3 days ago

arXiv:2511.11927v1 Announce Type: new Abstract: We study the high-dimensional inference of a rank-one signal corrupted by sparse noise. The noise is modelled as the adjacency matrix of a weighted undirected graph with finite average connectivity in the large size limit. Using the replica method from statistical physics, we analytically compute the typical value of the top eigenvalue, the top eigenvector component density, and the overlap between the signal vector and the top eigenvector. The solution is given in terms of recursive distributional equations for auxiliary probability density functions which can be efficiently solved using a population dynamics algorithm. Specialising the noise matrix to Poissonian and Random Regular degree distributions, the critical signal strength is analytically identified at which a transition happens for the recovery of the signal via the top eigenvector, thus generalising the celebrated BBP transition to the sparse noise case. In the large-connectivity limit, known results for dense noise are recovered. Analytical results are in agreement with numerical diagonalisation of large matrices.

#research
Score · 2.80
Bayesian--AI Fusion for Epidemiological Decision Making: Calibrated Risk, Honest Uncertainty, and Hyperparameter Intelligence
paper
arXiv stat.ML3 days ago

arXiv:2511.11983v1 Announce Type: new Abstract: Modern epidemiological analytics increasingly use machine learning models that offer strong prediction but often lack calibrated uncertainty. Bayesian methods provide principled uncertainty quantification, yet are viewed as difficult to integrate with contemporary AI workflows. This paper proposes a unified Bayesian and AI framework that combines Bayesian prediction with Bayesian hyperparameter optimization. We use Bayesian logistic regression to obtain calibrated individual-level disease risk and credible intervals on the Pima Indians Diabetes dataset. In parallel, we use Gaussian-process Bayesian optimization to tune penalized Cox survival models on the GBSG2 breast cancer cohort. This yields a two-layer system: a Bayesian predictive layer that represents risk as a posterior distribution, and a Bayesian optimization layer that treats model selection as inference over a black-box objective. Simulation studies in low- and high-dimensional regimes show that the Bayesian layer provides reliable coverage and improved calibration, while Bayesian shrinkage improves AUC, Brier score, and log-loss. Bayesian optimization consistently pushes survival models toward near-oracle concordance. Overall, Bayesian reasoning enhances both what we infer and how we search, enabling calibrated risk and principled hyperparameter intelligence for epidemiological decision making.

#ai
#research
Score · 2.80
PCA++: How Uniformity Induces Robustness to Background Noise in Contrastive Learning
paper
arXiv stat.ML3 days ago

arXiv:2511.12278v1 Announce Type: new Abstract: High-dimensional data often contain low-dimensional signals obscured by structured background noise, which limits the effectiveness of standard PCA. Motivated by contrastive learning, we address the problem of recovering shared signal subspaces from positive pairs, paired observations sharing the same signal but differing in background. Our baseline, PCA+, uses alignment-only contrastive learning and succeeds when background variation is mild, but fails under strong noise or high-dimensional regimes. To address this, we introduce PCA++, a hard uniformity-constrained contrastive PCA that enforces identity covariance on projected features. PCA++ has a closed-form solution via a generalized eigenproblem, remains stable in high dimensions, and provably regularizes against background interference. We provide exact high-dimensional asymptotics in both fixed-aspect-ratio and growing-spike regimes, showing uniformity's role in robust signal recovery. Empirically, PCA++ outperforms standard PCA and alignment-only PCA+ on simulations, corrupted-MNIST, and single-cell transcriptomics, reliably recovering condition-invariant structure. More broadly, we clarify uniformity's role in contrastive learning, showing that explicit feature dispersion defends against structured noise and enhances robustness.

#ai
Score · 2.80
TSB-HB: A Hierarchical Bayesian Extension of the TSB Model for Intermittent Demand Forecasting
paper
arXiv stat.ML3 days ago

arXiv:2511.12749v1 Announce Type: new Abstract: Intermittent demand forecasting poses unique challenges due to sparse observations, cold-start items, and obsolescence. Classical models such as Croston, SBA, and the Teunter-Syntetos-Babai (TSB) method provide simple heuristics but lack a principled generative foundation. Deep learning models address these limitations but often require large datasets and sacrifice interpretability. We introduce TSB-HB, a hierarchical Bayesian extension of TSB. Demand occurrence is modeled with a Beta-Binomial distribution, while nonzero demand sizes follow a Log-Normal distribution. Crucially, hierarchical priors enable partial pooling across items, stabilizing estimates for sparse or cold-start series while preserving heterogeneity. This framework yields a fully generative and interpretable model that generalizes classical exponential smoothing. On the UCI Online Retail dataset, TSB-HB achieves lower RMSE and RMSSE than Croston, SBA, TSB, ADIDA, IMAPA, ARIMA and Theta, and on a subset of the M5 dataset it outperforms all classical baselines we evaluate. The model provides calibrated probabilistic forecasts and improved accuracy on intermittent and lumpy items by combining a generative formulation with hierarchical shrinkage, while remaining interpretable and scalable.

#ai
Score · 2.80
Function-on-Function Bayesian Optimization
paper
arXiv stat.ML3 days ago

arXiv:2511.12783v1 Announce Type: new Abstract: Bayesian optimization (BO) has been widely used to optimize expensive and gradient-free objective functions across various domains. However, existing BO methods have not addressed the objective where both inputs and outputs are functions, which increasingly arise in complex systems as advanced sensing technologies. To fill this gap, we propose a novel function-on-function Bayesian optimization (FFBO) framework. Specifically, we first introduce a function-on-function Gaussian process (FFGP) model with a separable operator-valued kernel to capture the correlations between function-valued inputs and outputs. Compared to existing Gaussian process models, FFGP is modeled directly in the function space. Based on FFGP, we define a scalar upper confidence bound (UCB) acquisition function using a weighted operator-based scalarization strategy. Then, a scalable functional gradient ascent algorithm (FGA) is developed to efficiently identify the optimal function-valued input. We further analyze the theoretical properties of the proposed method. Extensive experiments on synthetic and real-world data demonstrate the superior performance of FFBO over existing approaches.

#ai
Score · 2.80
Benign Overfitting in Linear Classifiers with a Bias Term
paper
arXiv stat.ML3 days ago

arXiv:2511.12840v1 Announce Type: new Abstract: Modern machine learning models with a large number of parameters often generalize well despite perfectly interpolating noisy training data - a phenomenon known as benign overfitting. A foundational explanation for this in linear classification was recently provided by Hashimoto et al. (2025). However, this analysis was limited to the setting of "homogeneous" models, which lack a bias (intercept) term - a standard component in practice. This work directly extends Hashimoto et al.'s results to the more realistic inhomogeneous case, which incorporates a bias term. Our analysis proves that benign overfitting persists in these more complex models. We find that the presence of the bias term introduces new constraints on the data's covariance structure required for generalization, an effect that is particularly pronounced when label noise is present. However, we show that in the isotropic case, these new constraints are dominated by the requirements inherited from the homogeneous model. This work provides a more complete picture of benign overfitting, revealing the non-trivial impact of the bias term on the conditions required for good generalization.

#ai
Score · 2.80
Reconstruction of Manifold Distances from Noisy Observations
paper
arXiv stat.ML3 days ago

arXiv:2511.13025v1 Announce Type: new Abstract: We consider the problem of reconstructing the intrinsic geometry of a manifold from noisy pairwise distance observations. Specifically, let $M$ denote a diameter 1 d-dimensional manifold and $\mu$ a probability measure on $M$ that is mutually absolutely continuous with the volume measure. Suppose $X_1,\dots,X_N$ are i.i.d. samples of $\mu$ and we observe noisy-distance random variables $d'(X_j, X_k)$ that are related to the true geodesic distances $d(X_j,X_k)$. With mild assumptions on the distributions and independence of the noisy distances, we develop a new framework for recovering all distances between points in a sufficiently dense subsample of $M$. Our framework improves on previous work which assumed i.i.d. additive noise with known moments. Our method is based on a new way to estimate $L_2$-norms of certain expectation-functions $f_x(y)=\mathbb{E}d'(x,y)$ and use them to build robust clusters centered at points of our sample. Using a new geometric argument, we establish that, under mild geometric assumptions--bounded curvature and positive injectivity radius--these clusters allow one to recover the true distances between points in the sample up to an additive error of $O(\varepsilon \log \varepsilon^{-1})$. We develop two distinct algorithms for producing these clusters. The first achieves a sample complexity $N \asymp \varepsilon^{-2d-2}\log(1/\varepsilon)$ and runtime $o(N^3)$. The second introduces novel geometric ideas that warrant further investigation. In the presence of missing observations, we show that a quantitative lower bound on sampling probabilities suffices to modify the cluster construction in the first algorithm and extend all recovery guarantees. Our main technical result also elucidates which properties of a manifold are necessary for the distance recovery, which suggests further extension of our techniques to a broader class of metric probability spaces.

#ai
Score · 2.80
Likelihood-guided Regularization in Attention Based Models
paper
arXiv stat.ML3 days ago

arXiv:2511.13221v1 Announce Type: new Abstract: The transformer architecture has demonstrated strong performance in classification tasks involving structured and high-dimensional data. However, its success often hinges on large- scale training data and careful regularization to prevent overfitting. In this paper, we intro- duce a novel likelihood-guided variational Ising-based regularization framework for Vision Transformers (ViTs), which simultaneously enhances model generalization and dynamically prunes redundant parameters. The proposed variational Ising-based regularization approach leverages Bayesian sparsification techniques to impose structured sparsity on model weights, allowing for adaptive architecture search during training. Unlike traditional dropout-based methods, which enforce fixed sparsity patterns, the variational Ising-based regularization method learns task-adaptive regularization, improving both efficiency and interpretability. We evaluate our approach on benchmark vision datasets, including MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100, demonstrating improved generalization under sparse, complex data and allowing for principled uncertainty quantification on both weights and selection parameters. Additionally, we show that the Ising regularizer leads to better-calibrated probability estimates and structured feature selection through uncertainty-aware attention mechanisms. Our results highlight the effectiveness of structured Bayesian sparsification in enhancing transformer-based architectures, offering a principled alternative to standard regularization techniques.

#ai
#research
Score · 2.80
The Shape of Data: Topology Meets Analytics. A Practical Introduction to Topological Analytics and the Stability Index (TSI) in Business
paper
arXiv stat.ML3 days ago

arXiv:2511.13503v1 Announce Type: new Abstract: Modern business and economic datasets often exhibit nonlinear, multi-scale structures that traditional linear tools under-represent. Topological Data Analysis (TDA) offers a geometric lens for uncovering robust patterns, such as connected components, loops and voids, across scales. This paper provides an intuitive, figure-driven introduction to persistent homology and a practical, reproducible TDA pipeline for applied analysts. Through comparative case studies in consumer behavior, equity markets (SAX/eSAX vs.\ TDA) and foreign exchange dynamics, we demonstrate how topological features can reveal segmentation patterns and structural relationships beyond classical statistical methods. We discuss methodological choices regarding distance metrics, complex construction and interpretation, and we introduce the \textit{Topological Stability Index} (TSI), a simple yet interpretable indicator of structural variability derived from persistence lifetimes. We conclude with practical guidelines for TDA implementation, visualization and communication in business and economic analytics.

#research
Score · 2.80
Social and Physical Attributes-Defined Trust Evaluation for Effective Collaborator Selection in Human-Device Coexistence Systems
paper
arXiv stat.ML3 days ago

arXiv:2511.11578v1 Announce Type: cross Abstract: In human-device coexistence systems, collaborations among devices are determined by not only physical attributes such as network topology but also social attributes among human users. Consequently, trust evaluation of potential collaborators based on these multifaceted attributes becomes critical for ensuring the eventual outcome. However, due to the high heterogeneity and complexity of physical and social attributes, efficiently integrating them for accurate trust evaluation remains challenging. To overcome this difficulty, a canonical correlation analysis-enhanced hypergraph self-supervised learning (HSLCCA) method is proposed in this research. First, by treating all attributes as relationships among connected devices, a relationship hypergraph is constructed to comprehensively capture inter-device relationships across three dimensions: spatial attribute-related, device attribute-related, and social attribute-related. Next, a self-supervised learning framework is developed to integrate these multi-dimensional relationships and generate device embeddings enriched with relational semantics. In this learning framework, the relationship hypergraph is augmented into two distinct views to enhance semantic information. A parameter-sharing hypergraph neural network is then utilized to learn device embeddings from both views. To further enhance embedding quality, a CCA approach is applied, allowing the comparison of data between the two views. Finally, the trustworthiness of devices is calculated based on the learned device embeddings. Extensive experiments demonstrate that the proposed HSLCCA method significantly outperforms the baseline algorithm in effectively identifying trusted devices.

#ai
#research
Score · 2.80
Mind Your Entropy: From Maximum Entropy to Trajectory Entropy-Constrained RL
paper
arXiv stat.ML3 days ago

arXiv:2511.11592v1 Announce Type: cross Abstract: Maximum entropy has become a mainstream off-policy reinforcement learning (RL) framework for balancing exploitation and exploration. However, two bottlenecks still limit further performance improvement: (1) non-stationary Q-value estimation caused by jointly injecting entropy and updating its weighting parameter, i.e., temperature; and (2) short-sighted local entropy tuning that adjusts temperature only according to the current single-step entropy, without considering the effect of cumulative entropy over time. In this paper, we extends maximum entropy framework by proposing a trajectory entropy-constrained reinforcement learning (TECRL) framework to address these two challenges. Within this framework, we first separately learn two Q-functions, one associated with reward and the other with entropy, ensuring clean and stable value targets unaffected by temperature updates. Then, the dedicated entropy Q-function, explicitly quantifying the expected cumulative entropy, enables us to enforce a trajectory entropy constraint and consequently control the policy long-term stochasticity. Building on this TECRL framework, we develop a practical off-policy algorithm, DSAC-E, by extending the state-of-the-art distributional soft actor-critic with three refinements (DSAC-T). Empirical results on the OpenAI Gym benchmark demonstrate that our DSAC-E can achieve higher returns and better stability.

#ai
#research
Score · 2.80
Deep Reinforcement Learning for Automated Stock Trading: An Ensemble Strategy
paper
arXiv stat.ML3 days ago

arXiv:2511.12120v1 Announce Type: cross Abstract: Stock trading strategies play a critical role in investment. However, it is challenging to design a profitable strategy in a complex and dynamic stock market. In this paper, we propose an ensemble strategy that employs deep reinforcement schemes to learn a stock trading strategy by maximizing investment return. We train a deep reinforcement learning agent and obtain an ensemble trading strategy using three actor-critic based algorithms: Proximal Policy Optimization (PPO), Advantage Actor Critic (A2C), and Deep Deterministic Policy Gradient (DDPG). The ensemble strategy inherits and integrates the best features of the three algorithms, thereby robustly adjusting to different market situations. In order to avoid the large memory consumption in training networks with continuous action space, we employ a load-on-demand technique for processing very large data. We test our algorithms on the 30 Dow Jones stocks that have adequate liquidity. The performance of the trading agent with different reinforcement learning algorithms is evaluated and compared with both the Dow Jones Industrial Average index and the traditional min-variance portfolio allocation strategy. The proposed deep ensemble strategy is shown to outperform the three individual algorithms and two baselines in terms of the risk-adjusted return measured by the Sharpe ratio. This work is fully open-sourced at \href{https://github.com/AI4Finance-Foundation/Deep-Reinforcement-Learning-for-Automated-Stock-Trading-Ensemble-Strategy-ICAIF-2020}{GitHub}.

#ai
#research
#open_source
Score · 2.80
Page 40 of 93