Fresh from the feed
Filter by timeframe and category to zero in on the moves that matter.
arXiv:2508.12409v2 Announce Type: replace Abstract: Semi-supervised semantic segmentation (S4) has advanced remote sensing (RS) analysis by leveraging unlabeled data through pseudo-labeling and consistency learning. However, existing S4 studies often rely on small-scale datasets and models, limiting their practical applicability. To address this, we propose S5, the first scalable framework for semi-supervised semantic segmentation in RS, which unlocks the potential of vast unlabeled Earth observation data typically underutilized due to costly pixel-level annotations. Built upon existing large-scale RS datasets, S5 introduces a data selection strategy that integrates entropy-based filtering and diversity expansion, resulting in the RS4P-1M dataset. Using this dataset, we systematically scale up S4 methods by pre-training RS foundation models (RSFMs) of varying sizes on this extensive corpus, significantly boosting their performance on land cover segmentation and object detection tasks. Furthermore, during fine-tuning, we incorporate a Mixture-of-Experts (MoE)-based multi-dataset fine-tuning approach, which enables efficient adaptation to multiple RS benchmarks with fewer parameters. This approach improves the generalization and versatility of RSFMs across diverse RS benchmarks. The resulting RSFMs achieve state-of-the-art performance across all benchmarks, underscoring the viability of scaling semi-supervised learning for RS applications. All datasets, code, and models will be released at https://github.com/MiliLab/S5
arXiv:2508.12638v2 Announce Type: replace Abstract: Vision-Language Models (VLMs) are increasingly deployed in real-time applications such as autonomous driving and human-computer interaction, which demand fast and reliable responses based on accurate perception. To meet these requirements, existing systems commonly employ cloud-edge collaborative architectures, such as partitioned Large Vision-Language Models (LVLMs) or task offloading strategies between Large and Small Vision-Language Models (SVLMs). However, these methods fail to accommodate cloud latency fluctuations and overlook the full potential of delayed but accurate LVLM responses. In this work, we propose a novel cloud-edge collaborative paradigm for VLMs, termed Context Transfer, which treats the delayed outputs of LVLMs as historical context to provide real-time guidance for SVLMs inference. Based on this paradigm, we design edgeVLM, which incorporates both context replacement and visual focus modules to refine historical textual input and enhance visual grounding consistency. Extensive experiments on three real-time vision-lanuage reasoning tasks across four datasets demonstrate the effectiveness of the proposed framework. The new paradigm lays the groundwork for more effective and latency-aware collaboration strategies in future VLM systems.
arXiv:2509.04895v2 Announce Type: replace Abstract: Sebocytes are lipid-secreting cells whose differentiation is marked by the accumulation of intracellular lipid droplets, making their quantification a key readout in sebocyte biology. Manual counting is labor-intensive and subjective, motivating automated solutions. Here, we introduce a simple attention-based multiple instance learning (MIL) framework for sebocyte image analysis. Nile Red-stained sebocyte images were annotated into 14 classes according to droplet counts, expanded via data augmentation to about 50,000 cells. Two models were benchmarked: a baseline multi-layer perceptron (MLP) trained on aggregated patch-level counts, and an attention-based MIL model leveraging ResNet-50 features with instance weighting. Experiments using five-fold cross-validation showed that the baseline MLP achieved more stable performance (mean MAE = 5.6) compared with the attention-based MIL, which was less consistent (mean MAE = 10.7) but occasionally superior in specific folds. These findings indicate that simple bag-level aggregation provides a robust baseline for slide-level droplet counting, while attention-based MIL requires task-aligned pooling and regularization to fully realize its potential in sebocyte image analysis.
arXiv:2509.21715v2 Announce Type: replace Abstract: Multi-object tracking (MOT) in videos remains challenging due to complex object motions and crowded scenes. Recent DETR-based frameworks offer end-to-end solutions but typically process detection and tracking queries jointly within a single Transformer Decoder layer, leading to conflicts and degraded association accuracy. We introduce the Motion-Aware Transformer (MATR), which explicitly predicts object movements across frames to update track queries in advance. By reducing query collisions, MATR enables more consistent training and improves both detection and association. Extensive experiments on DanceTrack, SportsMOT, and BDD100k show that MATR delivers significant gains across standard metrics. On DanceTrack, MATR improves HOTA by more than 9 points over MOTR without additional data and reaches a new state-of-the-art score of 71.3 with supplementary data. MATR also achieves state-of-the-art results on SportsMOT (72.2 HOTA) and BDD100k (54.7 mTETA, 41.6 mHOTA) without relying on external datasets. These results demonstrate that explicitly modeling motion within end-to-end Transformers offers a simple yet highly effective approach to advancing multi-object tracking.
arXiv:2509.07673v3 Announce Type: replace Abstract: Deep neural networks have exhibited impressive performance in image classification tasks but remain vulnerable to adversarial examples. Standard adversarial training enhances robustness but typically fails to explicitly address inter-class feature overlap, a significant contributor to adversarial susceptibility. In this work, we introduce a novel adversarial training framework that actively mitigates inter-class proximity by projecting out inter-class dependencies from adversarial and clean samples in the feature space. Specifically, our approach first identifies the nearest inter-class neighbors for each adversarial sample and subsequently removes projections onto these neighbors to enforce stronger feature separability. Theoretically, we demonstrate that our proposed logits correction reduces the Lipschitz constant of neural networks, thereby lowering the Rademacher complexity, which directly contributes to improved generalization and robustness. Extensive experiments across standard benchmarks including CIFAR-10, CIFAR-100, and SVHN show that our method demonstrates strong performance that is competitive with leading adversarial training techniques, highlighting significant achievements in both robust and clean accuracy. Our findings reveal the importance of addressing inter-class feature proximity explicitly to bolster adversarial robustness in DNNs.
arXiv:2509.07864v2 Announce Type: replace Abstract: Multimodal Large Language Models (MLLMs) achieve strong performance on tasks like image captioning and visual question answering, but remain prone to hallucinations, where generated text conflicts with the visual input. Prior work links this partly to insufficient visual attention, but existing attention-based detectors and mitigation typically apply uniform adjustments across layers and heads, obscuring where errors originate. In this paper, we first show these methods fail to accurately localize problematic layers. Then, we introduce two diagnostics: Layer Image Attention Entropy (LIAE) which flags anomalous layers, and Image Attention Focus (IAF) which scores attention heads within those layers. Analysis shows that LIAE pinpoints faulty layers and IAF reliably ranks heads that warrant correction. Guided by these signals, we propose Dynamic Layer-wise Entropy and Attention Fusion (D-LEAF), a task-agnostic, attention-guided method that dynamically localizes and corrects errors during inference with negligible overhead. Furthermore, by establishing a connection between D-LEAF and DPO, we provide theoretical justification for the effectiveness of D-LEAF. Results show our D-LEAF delivers a 53\% relative improvement on standard captioning benchmarks, and on VQA both accuracy and F1-score improve by approximately 4\%, substantially suppressing hallucinations while preserving efficiency.
arXiv:2509.08374v2 Announce Type: replace Abstract: Three-dimensional Object Detection from multi-view cameras and LiDAR is a crucial component for autonomous driving and smart transportation. However, in the process of basic feature extraction, perspective transformation, and feature fusion, noise and error will gradually accumulate. To address this issue, we propose InsFusion, which can extract proposals from both raw and fused features and utilizes these proposals to query the raw features, thereby mitigating the impact of accumulated errors. Additionally, by incorporating attention mechanisms applied to the raw features, it thereby mitigates the impact of accumulated errors. Experiments on the nuScenes dataset demonstrate that InsFusion is compatible with various advanced baseline methods and delivers new state-of-the-art performance for 3D object detection.
arXiv:2509.10122v2 Announce Type: replace Abstract: Pre-trained diffusion models have shown great potential in real-world image super-resolution (Real-ISR) tasks by enabling high-resolution reconstructions. While one-step diffusion (OSD) methods significantly improve efficiency compared to traditional multi-step approaches, they still have limitations in balancing fidelity and realism across diverse scenarios. Since the OSDs for SR are usually trained or distilled by a single timestep, they lack flexible control mechanisms to adaptively prioritize these competing objectives, which are inherently manageable in multi-step methods through adjusting sampling steps. To address this challenge, we propose a Realism Controlled One-step Diffusion (RCOD) framework for Real-ISR. RCOD provides a latent domain grouping strategy that enables explicit control over fidelity-realism trade-offs during the noise prediction phase with minimal training paradigm modifications and original training data. A degradation-aware sampling strategy is also introduced to align distillation regularization with the grouping strategy and enhance the controlling of trade-offs. Moreover, a visual prompt injection module is used to replace conventional text prompts with degradation-aware visual tokens, enhancing both restoration accuracy and semantic consistency. Our method achieves superior fidelity and perceptual quality while maintaining computational efficiency. Extensive experiments demonstrate that RCOD outperforms state-of-the-art OSD methods in both quantitative metrics and visual qualities, with flexible realism control capabilities in the inference stage.
arXiv:2509.11838v2 Announce Type: replace Abstract: Semantic segmentation networks (SSNs) are central to safety-critical applications such as medical imaging and autonomous driving, where robustness under uncertainty is essential. However, existing probabilistic verification methods often fail to scale with the complexity and dimensionality of modern segmentation tasks, producing guarantees that are overly conservative and of limited practical value. We propose a probabilistic verification framework that is architecture-agnostic and scalable to high-dimensional input-output spaces. Our approach employs conformal inference (CI), enhanced by a novel technique that we call the \textbf{clipping block}, to provide provable guarantees while mitigating the excessive conservatism of prior methods. Experiments on large-scale segmentation models across CamVid, OCTA-500, Lung Segmentation, and Cityscapes demonstrate that our framework delivers reliable safety guarantees while substantially reducing conservatism compared to state-of-the-art approaches on segmentation tasks. We also provide a public GitHub repository (https://github.com/Navidhashemicodes/SSN_Reach_CLP_Surrogate) for this approach, to support reproducibility.
arXiv:2509.12040v2 Announce Type: replace Abstract: Open-Vocabulary Remote Sensing Image Segmentation (OVRSIS), an emerging task that adapts Open-Vocabulary Segmentation (OVS) to the remote sensing (RS) domain, remains underexplored due to the absence of a unified evaluation benchmark and the domain gap between natural and RS images. To bridge these gaps, we first establish a standardized OVRSIS benchmark (\textbf{OVRSISBench}) based on widely-used RS segmentation datasets, enabling consistent evaluation across methods. Using this benchmark, we comprehensively evaluate several representative OVS/OVRSIS models and reveal their limitations when directly applied to remote sensing scenarios. Building on these insights, we propose \textbf{RSKT-Seg}, a novel open-vocabulary segmentation framework tailored for remote sensing. RSKT-Seg integrates three key components: (1) a Multi-Directional Cost Map Aggregation (RS-CMA) module that captures rotation-invariant visual cues by computing vision-language cosine similarities across multiple directions; (2) an Efficient Cost Map Fusion (RS-Fusion) transformer, which jointly models spatial and semantic dependencies with a lightweight dimensionality reduction strategy; and (3) a Remote Sensing Knowledge Transfer (RS-Transfer) module that injects pre-trained knowledge and facilitates domain adaptation via enhanced upsampling. Extensive experiments on the benchmark show that RSKT-Seg consistently outperforms strong OVS baselines by +3.8 mIoU and +5.9 mACC, while achieving 2x faster inference through efficient aggregation. Our code is \href{https://github.com/LiBingyu01/RSKT-Seg}{\textcolor{blue}{here}}.
arXiv:2509.24899v3 Announce Type: replace Abstract: Transformer-based video diffusion models (VDMs) deliver state-of-the-art video generation quality but are constrained by the quadratic cost of self-attention, making long sequences and high resolutions computationally expensive. While linear attention offers sub-quadratic complexity, previous approaches have failed to match the expressiveness of softmax attention unless retrained at significant computational cost. We introduce Attention Surgery, an efficient framework that enables linear or hybrid attention in pretrained VDMs, eliminating the need for training from scratch. Inspired by recent advances in language models, our method combines a novel hybrid attention mechanism-mixing softmax and linear tokens-with a lightweight distillation and fine-tuning pipeline requiring only a few GPU-days. Additionally, we incorporate a cost-aware block-rate strategy to balance expressiveness and efficiency across layers. Applied to Wan2.1 1.3B, a state-of-the-art efficient transformer VDM and evaluated on VBench, VBench2.0 and a human preference study, Attention Surgery achieves competitive results. Furthermore, measurements of on-mobile latency, memory usage, and FLOPs demonstrate notable improvements in scaling behavior for longer videos. Project page is available at: https://qualcomm-ai-research.github.io/attention-surgery.
arXiv:2510.00411v3 Announce Type: replace Abstract: The accurate interpretation of chest radiographs using automated methods is a critical task in medical imaging. This paper presents a comparative analysis between a supervised lightweight Convolutional Neural Network (CNN) and a state-of-the-art, zero-shot medical Vision-Language Model (VLM), BiomedCLIP, across two distinct diagnostic tasks: pneumonia detection on the PneumoniaMNIST benchmark and tuberculosis detection on the Shenzhen TB dataset. Our experiments show that supervised CNNs serve as highly competitive baselines in both cases. While the default zero-shot performance of the VLM is lower, we demonstrate that its potential can be unlocked via a simple yet crucial remedy: decision threshold calibration. By optimizing the classification threshold on a validation set, the performance of BiomedCLIP is significantly boosted across both datasets. For pneumonia detection, calibration enables the zero-shot VLM to achieve a superior F1-score of 0.8841, surpassing the supervised CNN's 0.8803. For tuberculosis detection, calibration dramatically improves the F1-score from 0.4812 to 0.7684, bringing it close to the supervised baseline's 0.7834. This work highlights a key insight: proper calibration is essential for leveraging the full diagnostic power of zero-shot VLMs, enabling them to match or even outperform efficient, task-specific supervised models.
arXiv:2510.02760v2 Announce Type: replace Abstract: Accurate brain tumor classification is critical for intra-operative decision making in neuro-oncological surgery. However, existing approaches are restricted to a fixed set of predefined classes and are therefore unable to capture patterns of tumor types not available during training. Unsupervised learning can extract general-purpose features, but it lacks the ability to incorporate prior knowledge from labelled data, and semi-supervised methods often assume that all potential classes are represented in the labelled data. Generalized Category Discovery (GCD) aims to bridge this gap by categorizing both known and unknown classes within unlabelled data. To reflect the hierarchical structure of brain tumor taxonomies, in this work, we introduce Hierarchical Generalized Category Discovery for Brain Tumor Classification (HGCD-BT), a novel approach that integrates hierarchical clustering with contrastive learning. Our method extends contrastive learning based GCD by incorporating a novel semi-supervised hierarchical clustering loss. We evaluate HGCD-BT on OpenSRH, a dataset of stimulated Raman histology brain tumor images, achieving a +28% improvement in accuracy over state-of-the-art GCD methods for patch-level classification, particularly in identifying previously unseen tumor categories. Furthermore, we demonstrate the generalizability of HGCD-BT on slide-level classification of hematoxylin and eosin stained whole-slide images from the Digital Brain Tumor Atlas, confirming its utility across imaging modalities.
Reasoning under Vision: Understanding Visual-Spatial Cognition in Vision-Language Models for CAPTCHA
arXiv:2510.06067v2 Announce Type: replace Abstract: CAPTCHA, originally designed to distinguish humans from robots, has evolved into a real-world benchmark for assessing the spatial reasoning capabilities of vision-language models. In this work, we first show that step-by-step reasoning is crucial for vision-language models (VLMs) to solve CAPTCHAs, which represent high-difficulty spatial reasoning tasks, and that current commercial vision-language models still struggle with such reasoning. In particular, we observe that most commercial VLMs (e.g., Gemini, Claude, GPT, etc.) fail to effectively solve CAPTCHAs and thus achieve low accuracy (around 21.9 percent). However, our findings indicate that requiring the model to perform step-by-step reasoning before generating the final coordinates can significantly enhance its solving accuracy, underscoring the severity of the gap. To systematically study this issue, we introduce CAPTCHA-X, the first real-world CAPTCHA benchmark with reasoning, covering seven categories of CAPTCHAs (such as Gobang, hCaptcha, etc.) with step-by-step action solutions and grounding annotations. We further define five reasoning-oriented metrics that enable a comprehensive evaluation of models reasoning capabilities. To validate the effectiveness of reasoning, we also propose a general agentic VLM-based framework that incorporates the models inherent reasoning abilities. Our method achieves state-of-the-art performance across five high-difficulty CAPTCHA types, with an average solving accuracy of 83.9 percent, substantially surpassing existing baselines. These results reveal the limitations of current models and highlight the importance of reasoning in advancing visual-spatial challenges in the future.
arXiv:2510.16410v2 Announce Type: replace Abstract: Bridging the gap between complex human instructions and precise 3D object grounding remains a significant challenge in vision and robotics. Existing 3D segmentation methods often struggle to interpret ambiguous, reasoning-based instructions, while 2D vision-language models that excel at such reasoning lack intrinsic 3D spatial understanding. In this paper, we introduce REALM, an innovative MLLM-agent framework that enables open-world reasoning-based segmentation without requiring extensive 3D-specific post-training. We perform segmentation directly on 3D Gaussian Splatting representations, capitalizing on their ability to render photorealistic novel views that are highly suitable for MLLM comprehension. As directly feeding one or more rendered views to the MLLM can lead to high sensitivity to viewpoint selection, we propose a novel Global-to-Local Spatial Grounding strategy. Specifically, multiple global views are first fed into the MLLM agent in parallel for coarse-level localization, aggregating responses to robustly identify the target object. Then, several close-up novel views of the object are synthesized to perform fine-grained local segmentation, yielding accurate and consistent 3D masks. Extensive experiments show that REALM achieves remarkable performance in interpreting both explicit and implicit instructions across LERF, 3D-OVS, and our newly introduced REALM3D benchmarks. Furthermore, our agent framework seamlessly supports a range of 3D interaction tasks, including object removal, replacement, and style transfer, demonstrating its practical utility and versatility. Project page: https://ChangyueShi.github.io/REALM.
arXiv:2510.06251v2 Announce Type: replace Abstract: While recent Vision-Language Models (VLMs) have achieved impressive progress, it remains difficult to determine why they succeed or fail on complex reasoning tasks. Traditional benchmarks evaluate what models can answer correctly, not why they succeed or fail. In this work, we perform a failure-mode analysis of six frontier VLMs on three physics-based benchmarks - Physion, Physion++, and CLEVRER - by introducing custom subtests (for Physion and Physion++) and an integration of existing benchmark categories (for CLEVRER) to factor benchmark performance into distinct, testable capabilities. These subtests isolate perception (object, color, and occlusion recognition) and physics understanding (motion prediction and spatial reasoning), enabling us to test whether models attend to the correct entities and dynamics underlying their answers. Counterintuitively, subtest mastery correlates only weakly with benchmark accuracy: models often answer correctly without grounding in perception or physics. This suggests that current VLMs sometimes achieve benchmark scores for the wrong reasons, underscoring the need for diagnostics that expose hidden failure modes beyond aggregate metrics.
arXiv:2510.06638v2 Announce Type: replace Abstract: Knowledge-based Visual Question Answering (KVQA) requires models to ground entities in images and reason over factual knowledge. Recent work has introduced its implicit-knowledge variant, IK-KVQA, where a multimodal large language model (MLLM) is the sole knowledge source and answers are produced without external retrieval. Existing IK-KVQA approaches, however, are typically trained with answer-only supervision: reasoning remains implicit, justifications are often weak or inconsistent, and generalization after standard supervised fine-tuning (SFT) can be brittle. We propose MODELNAME, a framework that equips IK-KVQA with dual-path structured reasoning traces (symbolic relation paths over text and vision together with path-grounded natural-language explanations) to provide a stronger inductive bias than generic answer-only supervision. These traces act as modality-aware scaffolds that guide the model toward relevant entities and attributes, offering more structure than generic chain-of-thought supervision while not constraining reasoning to any single fixed path. Using a single open-source MLLM, MODELNAME constructs and selects traces to build an offline trace-enriched dataset and then performs structure-aware self-distillation; no external retrievers, verifiers, or curated knowledge bases are used, and inference is a single autoregressive pass. Across benchmarks, MODELNAME consistently improves both answer accuracy and the transparency of intermediate reasoning, achieving up to 11.3% higher answer accuracy on OK-VQA over the strongest baseline.
arXiv:2510.07656v2 Announce Type: replace Abstract: Personalizing diffusion models allows users to generate new images that incorporate a given subject, allowing more control than a text prompt. These models often suffer somewhat when they end up just recreating the subject image and ignoring the text prompt. We observe that one popular method for personalization, IP-Adapter, automatically generates masks that segment the subject from the background during inference. We propose to use this automatically generated mask on a second pass to mask the image tokens, thus restricting them to the subject, not the background, allowing the text prompt to attend to the rest of the image. For text prompts describing locations and places, this produces images that accurately depict the subject while definitively matching the prompt. We compare our method to a few other test time personalization methods, and find our method displays high prompt and source image alignment. We also perform a user study to validate whether end users would appreciate our method. Code available at https://github.com/jamesBaker361/monkey
arXiv:2510.12660v2 Announce Type: replace Abstract: In this work, we aim to develop simple and efficient models for human mesh recovery (HMR) and its predecessor task, human pose estimation (HPE). State-of-the-art HMR methods, such as HMR2.0 and its successors, rely on large, non-hierarchical vision transformers as encoders, which are inherited from the corresponding HPE models like ViTPose. To establish baselines across varying computational budgets, we first construct three lightweight HMR2.0 variants by adapting the corresponding ViTPose models. In addition, we propose leveraging the early stages of hierarchical vision foundation models (VFMs), including Swin Transformer, GroupMixFormer, and VMamba, as encoders. This design is motivated by the observation that intermediate stages of hierarchical VFMs produce feature maps with resolutions comparable to or higher than those of non-hierarchical counterparts. We conduct a comprehensive evaluation of 27 hierarchical-VFM-based HMR and HPE models, demonstrating that using only the first two or three stages achieves performance on par with full-stage models. Moreover, we show that the resulting truncated models exhibit better trade-offs between accuracy and computational efficiency compared to existing lightweight alternatives. The source code is available at https://github.com/nttcom/TruncHierVFM.
arXiv:2510.14741v2 Announce Type: replace Abstract: Understanding and explaining the behavior of machine learning models is essential for building transparent and trustworthy AI systems. We introduce DEXTER, a data-free framework that employs diffusion models and large language models to generate global, textual explanations of visual classifiers. DEXTER operates by optimizing text prompts to synthesize class-conditional images that strongly activate a target classifier. These synthetic samples are then used to elicit detailed natural language reports that describe class-specific decision patterns and biases. Unlike prior work, DEXTER enables natural language explanation about a classifier's decision process without access to training data or ground-truth labels. We demonstrate DEXTER's flexibility across three tasks-activation maximization, slice discovery and debiasing, and bias explanation-each illustrating its ability to uncover the internal mechanisms of visual classifiers. Quantitative and qualitative evaluations, including a user study, show that DEXTER produces accurate, interpretable outputs. Experiments on ImageNet, Waterbirds, CelebA, and FairFaces confirm that DEXTER outperforms existing approaches in global model explanation and class-level bias reporting. Code is available at https://github.com/perceivelab/dexter.