Fresh from the feed
Filter by timeframe and category to zero in on the moves that matter.
Adaptive Graph Rewiring to Mitigate Over-Squashing in Mesh-Based GNNs for Fluid Dynamics Simulations
arXiv:2511.12709v1 Announce Type: new Abstract: Mesh-based simulation using Graph Neural Networks (GNNs) has been recognized as a promising approach for modeling fluid dynamics. However, the mesh refinement techniques which allocate finer resolution to regions with steep gradients can induce the over-squashing problem in mesh-based GNNs, which prevents the capture of long-range physical interactions. Conventional graph rewiring methods attempt to alleviate this issue by adding new edges, but they typically complete all rewiring operations before applying them to the GNN. These approaches are physically unrealistic, as they assume instantaneous interactions between distant nodes and disregard the distance information between particles. To address these limitations, we propose a novel framework, called Adaptive Graph Rewiring in Mesh-Based Graph Neural Networks (AdaMeshNet), that introduces an adaptive rewiring process into the message-passing procedure to model the gradual propagation of physical interactions. Our method computes a rewiring delay score for bottleneck nodes in the mesh graph, based on the shortest-path distance and the velocity difference. Using this score, it dynamically selects the message-passing layer at which new edges are rewired, which can lead to adaptive rewiring in a mesh graph. Extensive experiments on mesh-based fluid simulations demonstrate that AdaMeshNet outperforms conventional rewiring methods, effectively modeling the sequential nature of physical interactions and enabling more accurate predictions.
arXiv:2511.12713v1 Announce Type: new Abstract: Bipartite learning is a machine learning task that aims to predict interactions between pairs of instances. It has been applied to various domains, including drug-target interactions, RNA-disease associations, and regulatory network inference. Despite being widely investigated, current methods still present drawbacks, as they are often designed for a specific application and thus do not generalize to other problems or present scalability issues. To address these challenges, we propose Oxytrees: proxy-based biclustering model trees. Oxytrees compress the interaction matrix into row- and column-wise proxy matrices, significantly reducing training time without compromising predictive performance. We also propose a new leaf-assignment algorithm that significantly reduces the time taken for prediction. Finally, Oxytrees employ linear models using the Kronecker product kernel in their leaves, resulting in shallower trees and thus even faster training. Using 15 datasets, we compared the predictive performance of ensembles of Oxytrees with that of the current state-of-the-art. We achieved up to 30-fold improvement in training times compared to state-of-the-art biclustering forests, while demonstrating competitive or superior performance in most evaluation settings, particularly in the inductive setting. Finally, we provide an intuitive Python API to access all datasets, methods and evaluation measures used in this work, thus enabling reproducible research in this field.
arXiv:2511.12722v1 Announce Type: new Abstract: Data poisoning is a training-time attack that undermines the trustworthiness of learned models. In a targeted data poisoning attack, an adversary manipulates the training dataset to alter the classification of a targeted test point. Given the typically large size of training dataset, manual detection of poisoning is difficult. An alternative is to automatically measure a dataset's robustness against such an attack, which is the focus of this paper. We consider a threat model wherein an adversary can only perturb the labels of the training dataset, with knowledge limited to the hypothesis space of the victim's model. In this setting, we prove that finding the robustness is an NP-Complete problem, even when hypotheses are linear classifiers. To overcome this, we present a technique that finds lower and upper bounds of robustness. Our implementation of the technique computes these bounds efficiently in practice for many publicly available datasets. We experimentally demonstrate the effectiveness of our approach. Specifically, a poisoning exceeding the identified robustness bounds significantly impacts test point classification. We are also able to compute these bounds in many more cases where state-of-the-art techniques fail.
arXiv:2511.12723v1 Announce Type: new Abstract: Deep neural networks typically rely on the representation produced by their final hidden layer to make predictions, implicitly assuming that this single vector fully captures the semantics encoded across all preceding transformations. However, intermediate layers contain rich and complementary information -- ranging from low-level patterns to high-level abstractions -- that is often discarded when the decision head depends solely on the last representation. This paper revisits the role of the output layer and introduces LAYA (Layer-wise Attention Aggregator), a novel output head that dynamically aggregates internal representations through attention. Instead of projecting only the deepest embedding, LAYA learns input-conditioned attention weights over layer-wise features, yielding an interpretable and architecture-agnostic mechanism for synthesizing predictions. Experiments on vision and language benchmarks show that LAYA consistently matches or improves the performance of standard output heads, with relative gains of up to about one percentage point in accuracy, while providing explicit layer-attribution scores that reveal how different abstraction levels contribute to each decision. Crucially, these interpretability signals emerge directly from the model's computation, without any external post hoc explanations. The code to reproduce LAYA is publicly available at: https://github.com/gvessio/LAYA.
arXiv:2511.12745v1 Announce Type: new Abstract: Scientific datasets often arise from multiple independent mechanisms such as spatial, categorical or structural effects, whose combined influence obscures their individual contributions. We introduce DIVIDE, a framework that disentangles these influences by integrating mechanism-specific deep encoders with a structured Gaussian Process in a joint latent space. Disentanglement here refers to separating independently acting generative factors. The encoders isolate distinct mechanisms while the Gaussian Process captures their combined effect with calibrated uncertainty. The architecture supports structured priors, enabling interpretable and mechanism-aware prediction as well as efficient active learning. DIVIDE is demonstrated on synthetic datasets combining categorical image patches with nonlinear spatial fields, on FerroSIM spin lattice simulations of ferroelectric patterns, and on experimental PFM hysteresis loops from PbTiO3 films. Across benchmarks, DIVIDE separates mechanisms, reproduces additive and scaled interactions, and remains robust under noise. The framework extends naturally to multifunctional datasets where mechanical, electromagnetic or optical responses coexist.
arXiv:2511.12751v1 Announce Type: new Abstract: Autonomous vehicle navigation in complex environments such as dense and fast-moving highways and merging scenarios remains an active area of research. A key limitation of RL is its reliance on well-specified reward functions, which often fail to capture the full semantic and social complexity of diverse, out-of-distribution situations. As a result, a rapidly growing line of research explores using Large Language Models (LLMs) to replace or supplement RL for direct planning and control, on account of their ability to reason about rich semantic context. However, LLMs present significant drawbacks: they can be unstable in zero-shot safety-critical settings, produce inconsistent outputs, and often depend on expensive API calls with network latency. This motivates our investigation into whether small, locally deployed LLMs (< 14B parameters) can meaningfully support autonomous highway driving through reward shaping rather than direct control. We present a case study comparing RL-only, LLM-only, and hybrid approaches, where LLMs augment RL rewards by scoring state-action transitions during training, while standard RL policies execute at test time. Our findings reveal that RL-only agents achieve moderate success rates (73-89%) with reasonable efficiency, LLM-only agents can reach higher success rates (up to 94%) but with severely degraded speed performance, and hybrid approaches consistently fall between these extremes. Critically, despite explicit efficiency instructions, LLM-influenced approaches exhibit systematic conservative bias with substantial model-dependent variability, highlighting important limitations of current small LLMs for safety-critical control tasks.
arXiv:2511.12764v1 Announce Type: new Abstract: When simulating partial differential equations, hybrid solvers combine coarse numerical solvers with learned correctors. They promise accelerated simulations while adhering to physical constraints. However, as shown in our theoretical framework, directly applying learned corrections to solver outputs leads to significant autoregressive errors, which originate from amplified perturbations that accumulate during long-term rollouts, especially in chaotic regimes. To overcome this, we propose the Indirect Neural Corrector (\(\mathrm{INC}\)), which integrates learned corrections into the governing equations rather than applying direct state updates. Our key insight is that \(\mathrm{INC}\) reduces the error amplification on the order of \(\Delta t^{-1} + L\), where \(\Delta t\) is the timestep and $L$ the Lipschitz constant. At the same time, our framework poses no architectural requirements and integrates seamlessly with arbitrary neural networks and solvers. We test \(\mathrm{INC}\) in extensive benchmarks, covering numerous differentiable solvers, neural backbones, and test cases ranging from a 1D chaotic system to 3D turbulence. INC improves the long-term trajectory performance (\(R^2\)) by up to 158.7\%, stabilizes blowups under aggressive coarsening, and for complex 3D turbulence cases yields speed-ups of several orders of magnitude. INC thus enables stable, efficient PDE emulation with formal error reduction, paving the way for faster scientific and engineering simulations with reliable physics guarantees. Our source code is available at https://github.com/tum-pbs/INC
arXiv:2511.12770v1 Announce Type: new Abstract: Understanding and continuously refining multimodal molecular knowledge is crucial for advancing biomedicine, chemistry, and materials science. Molecule language models (MoLMs) have become powerful tools in these domains, integrating structural representations (e.g., SMILES strings, molecular graphs) with rich contextual descriptions (e.g., physicochemical properties). However, MoLMs can encode and propagate inaccuracies due to outdated web-mined training corpora or malicious manipulation, jeopardizing downstream discovery pipelines. While knowledge editing has been explored for general-domain AI, its application to MoLMs remains uncharted, presenting unique challenges due to the multifaceted and interdependent nature of molecular knowledge. In this paper, we take the first step toward MoLM editing for two critical tasks: molecule-to-caption generation and caption-to-molecule generation. To address molecule-specific challenges, we propose MolEdit, a powerful framework that enables targeted modifications while preserving unrelated molecular knowledge. MolEdit combines a Multi-Expert Knowledge Adapter that routes edits to specialized experts for different molecular facets with an Expertise-Aware Editing Switcher that activates the adapters only when input closely matches the stored edits across all expertise, minimizing interference with unrelated knowledge. To systematically evaluate editing performance, we introduce MEBench, a comprehensive benchmark assessing multiple dimensions, including Reliability (accuracy of the editing), Locality (preservation of irrelevant knowledge), and Generality (robustness to reformed queries). Across extensive experiments on two popular MoLM backbones, MolEdit delivers up to 18.8% higher Reliability and 12.0% better Locality than baselines while maintaining efficiency. The code is available at: https://github.com/LzyFischer/MolEdit.
arXiv:2511.12779v1 Announce Type: new Abstract: We study the problem of efficiently estimating policies that simultaneously optimize multiple objectives in reinforcement learning (RL). Given $n$ objectives (or tasks), we seek the optimal partition of these objectives into $k \ll n$ groups, where each group comprises related objectives that can be trained together. This problem arises in applications such as robotics, control, and preference optimization in language models, where learning a single policy for all $n$ objectives is suboptimal as $n$ grows. We introduce a two-stage procedure -- meta-training followed by fine-tuning -- to address this problem. We first learn a meta-policy for all objectives using multitask learning. Then, we adapt the meta-policy to multiple randomly sampled subsets of objectives. The adaptation step leverages a first-order approximation property of well-trained policy networks, which is empirically verified to be accurate within a $2\%$ error margin across various RL environments. The resulting algorithm, PolicyGradEx, efficiently estimates an aggregate task-affinity score matrix given a policy evaluation algorithm. Based on the estimated affinity score matrix, we cluster the $n$ objectives into $k$ groups by maximizing the intra-cluster affinity scores. Experiments on three robotic control and the Meta-World benchmarks demonstrate that our approach outperforms state-of-the-art baselines by $16\%$ on average, while delivering up to $26\times$ faster speedup relative to performing full training to obtain the clusters. Ablation studies validate each component of our approach. For instance, compared with random grouping and gradient-similarity-based grouping, our loss-based clustering yields an improvement of $19\%$. Finally, we analyze the generalization error of policy networks by measuring the Hessian trace of the loss surface, which gives non-vacuous measures relative to the observed generalization errors.
arXiv:2511.12788v1 Announce Type: new Abstract: The semiconductor industry faces a computational crisis in extreme ultraviolet (EUV) lithography optimization, where traditional methods consume billions of CPU hours while failing to achieve sub-nanometer precision. We present a physics-constrained adaptive learning framework that automatically calibrates electromagnetic approximations through learnable parameters $\boldsymbol{\theta} = \{\theta_d, \theta_a, \theta_b, \theta_p, \theta_c\}$ while simultaneously minimizing Edge Placement Error (EPE) between simulated aerial images and target photomasks. The framework integrates differentiable modules for Fresnel diffraction, material absorption, optical point spread function blur, phase-shift effects, and contrast modulation with direct geometric pattern matching objectives, enabling cross-geometry generalization with minimal training data. Through physics-constrained learning on 15 representative patterns spanning current production to future research nodes, we demonstrate consistent sub-nanometer EPE performance (0.664-2.536 nm range) using only 50 training samples per pattern. Adaptive physics learning achieves an average improvement of 69.9\% over CNN baselines without physics constraints, with a significant inference speedup over rigorous electromagnetic solvers after training completion. This approach requires 90\% fewer training samples through cross-geometry generalization compared to pattern-specific CNN training approaches. This work establishes physics-constrained adaptive learning as a foundational methodology for real-time semiconductor manufacturing optimization, addressing the critical gap between academic physics-informed neural networks and industrial deployment requirements through joint physics calibration and manufacturing precision objectives.
arXiv:2511.12791v1 Announce Type: new Abstract: Selecting an appropriate look-back horizon remains a fundamental challenge in time series forecasting (TSF), particularly in the federated learning scenarios where data is decentralized, heterogeneous, and often non-independent. While recent work has explored horizon selection by preserving forecasting-relevant information in an intrinsic space, these approaches are primarily restricted to centralized and independently distributed settings. This paper presents a principled framework for adaptive horizon selection in federated time series forecasting through an intrinsic space formulation. We introduce a synthetic data generator (SDG) that captures essential temporal structures in client data, including autoregressive dependencies, seasonality, and trend, while incorporating client-specific heterogeneity. Building on this model, we define a transformation that maps time series windows into an intrinsic representation space with well-defined geometric and statistical properties. We then derive a decomposition of the forecasting loss into a Bayesian term, which reflects irreducible uncertainty, and an approximation term, which accounts for finite-sample effects and limited model capacity. Our analysis shows that while increasing the look-back horizon improves the identifiability of deterministic patterns, it also increases approximation error due to higher model complexity and reduced sample efficiency. We prove that the total forecasting loss is minimized at the smallest horizon where the irreducible loss starts to saturate, while the approximation loss continues to rise. This work provides a rigorous theoretical foundation for adaptive horizon selection for time series forecasting in federated learning.
arXiv:2511.12797v1 Announce Type: new Abstract: In-context learning (ICL) -- the capacity of a model to infer and apply abstract patterns from examples provided within its input -- has been extensively studied in large language models trained for next-token prediction on human text. In fact, prior work often attributes this emergent behavior to distinctive statistical properties in human language. This raises a fundamental question: can ICL arise organically in other sequence domains purely through large-scale predictive training? To explore this, we turn to genomic sequences, an alternative symbolic domain rich in statistical structure. Specifically, we study the Evo2 genomic model, trained predominantly on next-nucleotide (A/T/C/G) prediction, at a scale comparable to mid-sized LLMs. We develop a controlled experimental framework comprising symbolic reasoning tasks instantiated in both linguistic and genomic forms, enabling direct comparison of ICL across genomic and linguistic models. Our results show that genomic models, like their linguistic counterparts, exhibit log-linear gains in pattern induction as the number of in-context demonstrations increases. To the best of our knowledge, this is the first evidence of organically emergent ICL in genomic sequences, supporting the hypothesis that ICL arises as a consequence of large-scale predictive modeling over rich data. These findings extend emergent meta-learning beyond language, pointing toward a unified, modality-agnostic view of in-context learning.
arXiv:2511.12804v1 Announce Type: new Abstract: In self-consuming generative models that train on their own outputs, alignment with user preferences becomes a recursive rather than one-time process. We provide the first formal foundation for analyzing the long-term effects of such recursive retraining on alignment. Under a two-stage curation mechanism based on the Bradley-Terry (BT) model, we model alignment as an interaction between two factions: the Model Owner, who filters which outputs should be learned by the model, and the Public User, who determines which outputs are ultimately shared and retained through interactions with the model. Our analysis reveals three structural convergence regimes depending on the degree of preference alignment: consensus collapse, compromise on shared optima, and asymmetric refinement. We prove a fundamental impossibility theorem: no recursive BT-based curation mechanism can simultaneously preserve diversity, ensure symmetric influence, and eliminate dependence on initialization. Framing the process as dynamic social choice, we show that alignment is not a static goal but an evolving equilibrium, shaped both by power asymmetries and path dependence.
arXiv:2511.12808v1 Announce Type: new Abstract: Specifying informative and dense reward functions remains a pivotal challenge in Reinforcement Learning, as it directly affects the efficiency of agent training. In this work, we harness the expressive power of quantitative Linear Temporal Logic on finite traces (($\text{LTL}_f[\mathcal{F}]$)) to synthesize reward monitors that generate a dense stream of rewards for runtime-observable state trajectories. By providing nuanced feedback during training, these monitors guide agents toward optimal behaviour and help mitigate the well-known issue of sparse rewards under long-horizon decision making, which arises under the Boolean semantics dominating the current literature. Our framework is algorithm-agnostic and only relies on a state labelling function, and naturally accommodates specifying non-Markovian properties. Empirical results show that our quantitative monitors consistently subsume and, depending on the environment, outperform Boolean monitors in maximizing a quantitative measure of task completion and in reducing convergence time.
arXiv:2511.12817v1 Announce Type: new Abstract: The recent proliferation of large language models (LLMs) holds the potential to revolutionize healthcare, with strong capabilities in diverse medical tasks. Yet, deploying LLMs in high-stakes healthcare settings requires rigorous verification and validation to understand any potential harm. This paper investigates the reliability and viability of using medical knowledge graphs (KGs) for the automated factuality evaluation of LLM-generated responses. To ground this investigation, we introduce FAITH, a framework designed to systematically probe the strengths and limitations of this KG-based approach. FAITH operates without reference answers by decomposing responses into atomic claims, linking them to a medical KG, and scoring them based on evidence paths. Experiments on diverse medical tasks with human subjective evaluations demonstrate that KG-grounded evaluation achieves considerably higher correlations with clinician judgments and can effectively distinguish LLMs with varying capabilities. It is also robust to textual variances. The inherent explainability of its scoring can further help users understand and mitigate the limitations of current LLMs. We conclude that while limitations exist, leveraging KGs is a prominent direction for automated factuality assessment in healthcare.
arXiv:2511.12828v1 Announce Type: new Abstract: Catastrophic forgetting is a longstanding challenge in continual learning, where models lose knowledge from earlier tasks when learning new ones. While various mitigation strategies have been proposed for Multi-Layer Perceptrons (MLPs), recent architectural advances like Kolmogorov-Arnold Networks (KANs) have been suggested to offer intrinsic resistance to forgetting by leveraging localized spline-based activations. However, the practical behavior of KANs under continual learning remains unclear, and their limitations are not well understood. To address this, we present a comprehensive study of catastrophic forgetting in KANs and develop a theoretical framework that links forgetting to activation support overlap and intrinsic data dimension. We validate these analyses through systematic experiments on synthetic and vision tasks, measuring forgetting dynamics under varying model configurations and data complexity. Further, we introduce KAN-LoRA, a novel adapter design for parameter-efficient continual fine-tuning of language models, and evaluate its effectiveness in knowledge editing tasks. Our findings reveal that while KANs exhibit promising retention in low-dimensional algorithmic settings, they remain vulnerable to forgetting in high-dimensional domains such as image classification and language modeling. These results advance the understanding of KANs' strengths and limitations, offering practical insights for continual learning system design.
arXiv:2511.12829v1 Announce Type: new Abstract: We present a systematic evaluation of representation learning objectives for particle physics within a unified framework. Our study employs a shared transformer-based particle-cloud encoder with standardized preprocessing, matched sampling, and a consistent evaluation protocol on a jet classification dataset. We compare contrastive (supervised and self-supervised), masked particle modeling, and generative reconstruction objectives under a common training regimen. In addition, we introduce targeted supervised architectural modifications that achieve state-of-the-art performance on benchmark evaluations. This controlled comparison isolates the contributions of the learning objective, highlights their respective strengths and limitations, and provides reproducible baselines. We position this work as a reference point for the future development of foundation models in particle physics, enabling more transparent and robust progress across the community.
arXiv:2511.13306v1 Announce Type: cross Abstract: Gaining sustainable performance improvement with scaling data and model budget remains a pivotal yet unresolved challenge in autonomous driving. While autoregressive models exhibited promising data-scaling efficiency in planning tasks, predicting ego trajectories alone suffers sparse supervision and weakly constrains how scene evolution should shape ego motion. Therefore, we introduce DAP, a discrete-token autoregressive planner that jointly forecasts BEV semantics and ego trajectories, thereby enforcing comprehensive representation learning and allowing predicted dynamics to directly condition ego motion. In addition, we incorporate a reinforcement-learning-based fine-tuning, which preserves supervised behavior cloning priors while injecting reward-guided improvements. Despite a compact 160M parameter budget, DAP achieves state-of-the-art performance on open-loop metrics and delivers competitive closed-loop results on the NAVSIM benchmark. Overall, the fully discrete-token autoregressive formulation operating on both rasterized BEV and ego actions provides a compact yet scalable planning paradigm for autonomous driving.
arXiv:2511.13458v1 Announce Type: cross Abstract: With the growing deployment of Vision-Language Models (VLMs), pre-trained on large image-text and video-text datasets, it is critical to equip users with the tools to discern when to trust these systems. However, examining how user trust in VLMs builds and evolves remains an open problem. This problem is exacerbated by the increasing reliance on AI models as judges for experimental validation, to bypass the cost and implications of running participatory design studies directly with users. Following a user-centred approach, this paper presents preliminary results from a workshop with prospective VLM users. Insights from this pilot workshop inform future studies aimed at contextualising trust metrics and strategies for participants' engagement to fit the case of user-VLM interaction.
arXiv:2511.13679v1 Announce Type: cross Abstract: Deformable transformers deliver state-of-the-art detection but map poorly to hardware due to irregular memory access and low arithmetic intensity. We introduce QUILL, a schedule-aware accelerator that turns deformable attention into cache-friendly, single-pass work. At its core, Distance-based Out-of-Order Querying (DOOQ) orders queries by spatial proximity; the look-ahead drives a region prefetch into an alternate buffer--forming a schedule-aware prefetch loop that overlaps memory and compute. A fused MSDeformAttn engine executes interpolation, Softmax, aggregation, and the final projection (W''m) in one pass without spilling intermediates, while small tensors are kept on-chip and surrounding dense layers run on integrated GEMMs. Implemented as RTL and evaluated end-to-end, QUILL achieves up to 7.29x higher throughput and 47.3x better energy efficiency than an RTX 4090, and exceeds prior accelerators by 3.26-9.82x in throughput and 2.01-6.07x in energy efficiency. With mixed-precision quantization, accuracy tracks FP32 within <=0.9 AP across Deformable and Sparse DETR variants. By converting sparsity into locality--and locality into utilization--QUILL delivers consistent, end-to-end speedups.