Fresh from the feed
Filter by timeframe and category to zero in on the moves that matter.
arXiv:2511.12471v1 Announce Type: new Abstract: Diffusion models (DMs) have demonstrated to be powerful priors for signal recovery, but their application to 1-bit quantization tasks, such as 1-bit compressed sensing and logistic regression, remains a challenge. This difficulty stems from the inherent non-linear link function in these tasks, which is either non-differentiable or lacks an explicit characterization. To tackle this issue, we introduce Diff-OneBit, which is a fast and effective DM-based approach for signal recovery under 1-bit quantization. Diff-OneBit addresses the challenge posed by non-differentiable or implicit links functions via leveraging a differentiable surrogate likelihood function to model 1-bit quantization, thereby enabling gradient based iterations. This function is integrated into a flexible plug-and-play framework that decouples the data-fidelity term from the diffusion prior, allowing any pretrained DM to act as a denoiser within the iterative reconstruction process. Extensive experiments on the FFHQ, CelebA and ImageNet datasets demonstrate that Diff-OneBit gives high-fidelity reconstructed images, outperforming state-of-the-art methods in both reconstruction quality and computational efficiency across 1-bit compressed sensing and logistic regression tasks.
arXiv:2511.12489v1 Announce Type: new Abstract: Structure-Based drug design (SBDD) has emerged as a popular approach in drug discovery, leveraging three-dimensional protein structures to generate drug ligands. However, existing generative models encounter several key challenges: (1) incorporating boundary condition constraints, (2) integrating hierarchical structural conditions, and (3) ensuring spatial modeling fidelity. To address these limitations, we propose SculptDrug, a spatial condition-aware generative model based on Bayesian flow networks (BFNs). First, SculptDrug follows a BFN-based framework and employs a progressive denoising strategy to ensure spatial modeling fidelity, iteratively refining atom positions while enhancing local interactions for precise spatial alignment. Second, we introduce a Boundary Awareness Block that incorporates protein surface constraints into the generative process to ensure that generated ligands are geometrically compatible with the target protein. Third, we design a Hierarchical Encoder that captures global structural context while preserving fine-grained molecular interactions, ensuring overall consistency and accurate ligand-protein conformations. We evaluate SculptDrug on the CrossDocked dataset, and experimental results demonstrate that SculptDrug outperforms state-of-the-art baselines, highlighting the effectiveness of spatial condition-aware modeling.
arXiv:2511.12491v1 Announce Type: new Abstract: Fully Test-Time Adaptation (FTTA) addresses domain shifts without access to source data and training protocols of the pre-trained models. Traditional strategies that align source and target feature distributions are infeasible in FTTA due to the absence of training data and unpredictable target domains. In this work, we exploit a dual perspective on FTTA, and propose Agnostic FTTA (AFTTA) as a novel formulation that enables the usage of off-the-shelf domain transformations during test-time to enable direct generalization to unforeseeable target data. To address this, we develop an uncover-and-unlearn approach. First, we uncover potential unwanted shifts between source and target domains by simulating them through predefined mappings and consider them as nuisances. Then, during test-time prediction, the model is enforced to unlearn these nuisances by regularizing the consequent shifts in latent representations and label predictions. Specifically, a mutual information-based criterion is devised and applied to guide nuisances unlearning in the feature space and encourage confident and consistent prediction in label space. Our proposed approach explicitly addresses agnostic domain shifts, enabling superior model generalization under FTTA constraints. Extensive experiments on various tasks, involving corruption and style shifts, demonstrate that our method consistently outperforms existing approaches.
arXiv:2511.12494v1 Announce Type: new Abstract: Label distribution learning (LDL) is a novel paradigm that describe the samples by label distribution of a sample. However, acquiring LDL dataset is costly and time-consuming, which leads to the birth of incomplete label distribution learning (IncomLDL). All the previous IncomLDL methods set the description degrees of "missing" labels in an instance to 0, but remains those of other labels unchanged. This setting is unrealistic because when certain labels are missing, the degrees of the remaining labels will increase accordingly. We fix this unrealistic setting in IncomLDL and raise a new problem: LDL with hidden labels (HidLDL), which aims to recover a complete label distribution from a real-world incomplete label distribution where certain labels in an instance are omitted during annotation. To solve this challenging problem, we discover the significance of proportional information of the observed labels and capture it by an innovative constraint to utilize it during the optimization process. We simultaneously use local feature similarity and the global low-rank structure to reveal the mysterious veil of hidden labels. Moreover, we theoretically give the recovery bound of our method, proving the feasibility of our method in learning from hidden labels. Extensive recovery and predictive experiments on various datasets prove the superiority of our method to state-of-the-art LDL and IncomLDL methods.
arXiv:2511.12507v1 Announce Type: new Abstract: Road networks are critical infrastructures underpinning intelligent transportation systems and their related applications. Effective representation learning of road networks remains challenging due to the complex interplay between spatial structures and frequency characteristics in traffic patterns. Existing graph neural networks for modeling road networks predominantly fall into two paradigms: spatial-based methods that capture local topology but tend to over-smooth representations, and spectral-based methods that analyze global frequency components but often overlook localized variations. This spatial-spectral misalignment limits their modeling capacity for road networks exhibiting both coarse global trends and fine-grained local fluctuations. To bridge this gap, we propose HiFiNet, a novel hierarchical frequency-decomposition graph neural network that unifies spatial and spectral modeling. HiFiNet constructs a multi-level hierarchy of virtual nodes to enable localized frequency analysis, and employs a decomposition-updating-reconstruction framework with a topology-aware graph transformer to separately model and fuse low- and high-frequency signals. Theoretically justified and empirically validated on multiple real-world datasets across four downstream tasks, HiFiNet demonstrates superior performance and generalization ability in capturing effective road network representations.
arXiv:2511.12512v1 Announce Type: new Abstract: Physics-informed learning for PDEs is surging across scientific computing and industrial simulation, yet prevailing methods face spectral bias, residual-data imbalance, and weak extrapolation. We introduce a representation-level spectral remodeling xLSTM-PINN that combines gated-memory multiscale feature extraction with adaptive residual-data weighting to curb spectral bias and strengthen extrapolation. Across four benchmarks, we integrate gated cross-scale memory, a staged frequency curriculum, and adaptive residual reweighting, and verify with analytic references and extrapolation tests, achieving markedly lower spectral error and RMSE and a broader stable learning-rate window. Frequency-domain benchmarks show raised high-frequency kernel weights and a right-shifted resolvable bandwidth, shorter high-k error decay and time-to-threshold, and narrower error bands with lower MSE, RMSE, MAE, and MaxAE. Compared with the baseline PINN, we reduce MSE, RMSE, MAE, and MaxAE across all four benchmarks and deliver cleaner boundary transitions with attenuated high-frequency ripples in both frequency and field maps. This work suppresses spectral bias, widens the resolvable band and shortens the high-k time-to-threshold under the same budget, and without altering AD or physics losses improves accuracy, reproducibility, and transferability.
arXiv:2511.12742v1 Announce Type: new Abstract: As synthetic data proliferates across the Internet, it is often reused to train successive generations of generative models. This creates a ``self-consuming loop" that can lead to training instability or \textit{model collapse}. Common strategies to address the issue -- such as accumulating historical training data or injecting fresh real data -- either increase computational cost or require expensive human annotation. In this paper, we empirically analyze the latent space dynamics of self-consuming diffusion models and observe that the low-dimensional structure of latent representations extracted from synthetic data degrade over generations. Based on this insight, we propose \textit{Latent Space Filtering} (LSF), a novel approach that mitigates model collapse by filtering out less realistic synthetic data from mixed datasets. Theoretically, we present a framework that connects latent space degradation to empirical observations. Experimentally, we show that LSF consistently outperforms existing baselines across multiple real-world datasets, effectively mitigating model collapse without increasing training cost or relying on human annotation.
arXiv:2511.12534v1 Announce Type: new Abstract: We define the problem of linear Contextual Stochastic Shortest Path (CSSP), where at the beginning of each episode, the learner observes an adversarially chosen context that determines the MDP through a fixed but unknown linear function. The learner's objective is to reach a designated goal state with minimal expected cumulative loss, despite having no prior knowledge of the transition dynamics, loss functions, or the mapping from context to MDP. In this work, we propose LR-CSSP, an algorithm that achieves a regret bound of $\widetilde{O}(K^{2/3} d^{2/3} |S| |A|^{1/3} B_\star^2 T_\star \log (1/ \delta))$, where $K$ is the number of episodes, $d$ is the context dimension, $S$ and $A$ are the sets of states and actions respectively, $B_\star$ bounds the optimal cumulative loss and $T_\star$, unknown to the learner, bounds the expected time for the optimal policy to reach the goal. In the case where all costs exceed $\ell_{\min}$, LR-CSSP attains a regret of $\widetilde O(\sqrt{K \cdot d^2 |S|^3 |A| B_\star^3 \log(1/\delta)/\ell_{\min}})$. Unlike in contextual finite-horizon MDPs, where limited knowledge primarily leads to higher losses and regret, in the CSSP setting, insufficient knowledge can also prolong episodes and may even lead to non-terminating episodes. Our analysis reveals that LR-CSSP effectively handles continuous context spaces, while ensuring all episodes terminate within a reasonable number of time steps.
arXiv:2511.12548v1 Announce Type: new Abstract: First-order optimizers are reliable but slow in sharp, anisotropic regions. We study a curvature-adaptive method that periodically sketches a low-rank Hessian subspace via Hessian--vector products and preconditions gradients only in that subspace, leaving the orthogonal complement first-order. For L-smooth non-convex objectives, we recover the standard O(1/T) stationarity guarantee with a widened stable stepsize range; under a Polyak--Lojasiewicz (PL) condition with bounded residual curvature outside the sketch, the loss contracts at refresh steps. On CIFAR-10/100 with ResNet-18/34, the method enters the low-loss region substantially earlier: measured by epochs to a pre-declared train-loss threshold (0.75), it reaches the threshold 2.95x faster than Adam on CIFAR-100/ResNet-18, while matching final test accuracy. The approach is one-knob: performance is insensitive to the sketch rank k across {1,3,5}, and k=0 yields a principled curvature-free ablation. We release anonymized logs and scripts that regenerate all figures and tables.
arXiv:2511.12558v1 Announce Type: new Abstract: Classical analyses of gradient descent (GD) define a stability threshold based on the largest eigenvalue of the loss Hessian, often termed sharpness. When the learning rate lies below this threshold, training is stable and the loss decreases monotonically. Yet, modern deep networks often achieve their best performance beyond this regime. We demonstrate that such instabilities induce an implicit bias in GD, driving parameters toward flatter regions of the loss landscape and thereby improving generalization. The key mechanism is the Rotational Polarity of Eigenvectors (RPE), a geometric phenomenon in which the leading eigenvectors of the Hessian rotate during training instabilities. These rotations, which increase with learning rates, promote exploration and provably lead to flatter minima. This theoretical framework extends to stochastic GD, where instability-driven flattening persists and its empirical effects outweigh minibatch noise. Finally, we show that restoring instabilities in Adam further improves generalization. Together, these results establish and understand the constructive role of training instabilities in deep learning.
arXiv:2511.12568v1 Announce Type: new Abstract: This research aims to optimize intricate learning models by implementing quantization and bit-depth optimization techniques. The objective is to significantly cut time complexity while preserving model efficiency, thus addressing the challenge of extended execution times in intricate models. Two medical datasets were utilized as case studies to apply a Logistic Regression (LR) machine learning model. Using efficient quantization and bit depth optimization strategies the input data is downscaled from float64 to float32 and int32. The results demonstrated a significant reduction in time complexity, with only a minimal decrease in model accuracy post-optimization, showcasing the state-of-the-art optimization approach. This comprehensive study concludes that the impact of these optimization techniques varies depending on a set of parameters.
arXiv:2511.12905v1 Announce Type: new Abstract: This study explores the relationship between LinkedIn profile characteristics and professional success, focusing on the indicators of promotions, follower count, and career progression rate. By leveraging a dataset of over 62,000 anonymized LinkedIn profiles, we developed predictive models using machine learning techniques to identify the most influential factors driving professional success. Results indicate that while promotions are highly predictable, follower growth exhibits greater complexity. This research provides actionable insights for professionals seeking to optimize their LinkedIn presence and career strategies.
arXiv:2511.12581v1 Announce Type: new Abstract: Static IR drop analysis is a fundamental and critical task in the field of chip design. Nevertheless, this process can be quite time-consuming, potentially requiring several hours. Moreover, addressing IR drop violations frequently demands iterative analysis, thereby causing the computational burden. Therefore, fast and accurate IR drop prediction is vital for reducing the overall time invested in chip design. In this paper, we firstly propose a novel multimodal approach that efficiently processes SPICE files through large-scale netlist transformer (LNT). Our key innovation is representing and processing netlist topology as 3D point cloud representations, enabling efficient handling of netlist with up to hundreds of thousands to millions nodes. All types of data, including netlist files and image data, are encoded into latent space as features and fed into the model for static voltage drop prediction. This enables the integration of data from multiple modalities for complementary predictions. Experimental results demonstrate that our proposed algorithm can achieve the best F1 score and the lowest MAE among the winning teams of the ICCAD 2023 contest and the state-of-the-art algorithms.
arXiv:2511.12601v1 Announce Type: new Abstract: Neural network parameterizations exhibit inherent symmetries that yield multiple equivalent minima within the loss landscape. Scale Graph Metanetworks (ScaleGMNs) explicitly leverage these symmetries by proposing an architecture equivariant to both permutation and parameter scaling transformations. Previous work by Ainsworth et al. (2023) addressed permutation symmetries through a computationally intensive combinatorial assignment problem, demonstrating that leveraging permutation symmetries alone can map networks into a shared loss basin. In this work, we extend their approach by also incorporating scaling symmetries, presenting an autoencoder framework utilizing ScaleGMNs as invariant encoders. Experimental results demonstrate that our method aligns Implicit Neural Representations (INRs) and Convolutional Neural Networks (CNNs) under both permutation and scaling symmetries without explicitly solving the assignment problem. This approach ensures that similar networks naturally converge within the same basin, facilitating model merging, i.e., smooth linear interpolation while avoiding regions of high loss. The code is publicly available on our GitHub repository.
arXiv:2511.12603v1 Announce Type: new Abstract: Langevin dynamics sampling suffers from extremely low generation speed, fundamentally limited by numerous fine-grained iterations to converge to the target distribution. We introduce PID-controlled Langevin Dynamics (PIDLD), a novel sampling acceleration algorithm that reinterprets the sampling process using control-theoretic principles. By treating energy gradients as feedback signals, PIDLD combines historical gradients (the integral term) and gradient trends (the derivative term) to efficiently traverse energy landscapes and adaptively stabilize, thereby significantly reducing the number of iterations required to produce high-quality samples. Our approach requires no additional training, datasets, or prior information, making it immediately integrable with any Langevin-based method. Extensive experiments across image generation and reasoning tasks demonstrate that PIDLD achieves higher quality with fewer steps, making Langevin-based generative models more practical for efficiency-critical applications. The implementation can be found at \href{https://github.com/tsinghua-fib-lab/PIDLD}{https://github.com/tsinghua-fib-lab/PIDLD}.
arXiv:2511.12628v1 Announce Type: new Abstract: Current federated-learning models deteriorate under heterogeneous (non-I.I.D.) client data, as their feature representations diverge and pixel- or patch-level objectives fail to capture the global topology which is essential for high-dimensional visual tasks. We propose FedTopo, a framework that integrates Topological-Guided Block Screening (TGBS) and Topological Embedding (TE) to leverage topological information, yielding coherently aligned cross-client representations by Topological Alignment Loss (TAL). First, Topology-Guided Block Screening (TGBS) automatically selects the most topology-informative block, i.e., the one with maximal topological separability, whose persistence-based signatures best distinguish within- versus between-class pairs, ensuring that subsequent analysis focuses on topology-rich features. Next, this block yields a compact Topological Embedding, which quantifies the topological information for each client. Finally, a Topological Alignment Loss (TAL) guides clients to maintain topological consistency with the global model during optimization, reducing representation drift across rounds. Experiments on Fashion-MNIST, CIFAR-10, and CIFAR-100 under four non-I.I.D. partitions show that FedTopo accelerates convergence and improves accuracy over strong baselines.
arXiv:2511.12644v1 Announce Type: new Abstract: This article revisits the 20-year-old neural fitted Q-iteration (NFQ) algorithm on its classical CartPole benchmark. NFQ was a pioneering approach towards modern Deep Reinforcement Learning (Deep RL) in applying multi-layer neural networks to reinforcement learning for real-world control problems. We explore the algorithm's conceptual simplicity and its transition from online to batch learning, which contributed to its stability. Despite its initial success, NFQ required extensive tuning and was not easily reproducible on real-world control problems. We propose a modernized variant NFQ2.0 and apply it to the CartPole task, concentrating on a real-world system build from standard industrial components, to investigate and improve the learning process's repeatability and robustness. Through ablation studies, we highlight key design decisions and hyperparameters that enhance performance and stability of NFQ2.0 over the original variant. Finally, we demonstrate how our findings can assist practitioners in reproducing and improving results and applying deep reinforcement learning more effectively in industrial contexts.
arXiv:2511.12663v1 Announce Type: new Abstract: Federated learning (FL) enables multiple clients to collaboratively train a shared global model while preserving the privacy of their local data. Within this paradigm, the intellectual property rights (IPR) of client models are critical assets that must be protected. In practice, the central server responsible for maintaining the global model may maliciously manipulate the global model to erase client contributions or falsely claim sole ownership, thereby infringing on clients' IPR. Watermarking has emerged as a promising technique for asserting model ownership and protecting intellectual property. However, existing FL watermarking approaches remain limited, suffering from potential watermark collisions among clients, insufficient watermark security, and non-intuitive verification mechanisms. In this paper, we propose FLClear, a novel framework that simultaneously achieves collision-free watermark aggregation, enhanced watermark security, and visually interpretable ownership verification. Specifically, FLClear introduces a transposed model jointly optimized with contrastive learning to integrate the watermarking and main task objectives. During verification, the watermark is reconstructed from the transposed model and evaluated through both visual inspection and structural similarity metrics, enabling intuitive and quantitative ownership verification. Comprehensive experiments conducted over various datasets, aggregation schemes, and attack scenarios demonstrate the effectiveness of FLClear and confirm that it consistently outperforms state-of-the-art FL watermarking methods.
arXiv:2511.12682v1 Announce Type: new Abstract: Weather prediction is a quintessential problem involving the forecasting of a complex, nonlinear, and chaotic high-dimensional dynamical system. This work introduces an efficient reduced-order modeling (ROM) framework for short-range weather prediction and investigates fundamental questions in dimensionality reduction and reduced order modeling of such systems. Unlike recent AI-driven models, which require extensive computational resources, our framework prioritizes efficiency while achieving reasonable accuracy. Specifically, a ResNet-based convolutional autoencoder augmented by block attention modules is developed to reduce the dimensionality of high-dimensional weather data. Subsequently, a linear operator is learned in the time-delayed embedding of the latent space to efficiently capture the dynamics. Using the ERA5 reanalysis dataset, we demonstrate that this framework performs well in-distribution as evidenced by effectively predicting weather patterns within training data periods. We also identify important limitations in generalizing to future states, particularly in maintaining prediction accuracy beyond the training window. Our analysis reveals that weather systems exhibit strong temporal correlations that can be effectively captured through linear operations in an appropriately constructed embedding space, and that projection error rather than inference error is the main bottleneck. These findings shed light on some key challenges in reduced-order modeling of chaotic systems and point toward opportunities for hybrid approaches that combine efficient reduced-order models as baselines with more sophisticated AI architectures, particularly for applications in long-term climate modeling where computational efficiency is paramount.
arXiv:2511.12706v1 Announce Type: new Abstract: Training general agents to follow complex instructions (tasks) in intricate environments (levels) remains a core challenge in reinforcement learning. Random sampling of task-level pairs often produces unsolvable combinations, highlighting the need to co-design tasks and levels. While unsupervised environment design (UED) has proven effective at automatically designing level curricula, prior work has only considered a fixed task. We present ATLAS (Aligning Tasks and Levels for Autocurricula of Specifications), a novel method that generates joint autocurricula over tasks and levels. Our approach builds upon UED to automatically produce solvable yet challenging task-level pairs for policy training. To evaluate ATLAS and drive progress in the field, we introduce an evaluation suite that models tasks as reward machines in Minigrid levels. Experiments demonstrate that ATLAS vastly outperforms random sampling approaches, particularly when sampling solvable pairs is unlikely. We further show that mutations leveraging the structure of both tasks and levels accelerate convergence to performant policies.