Latest

Fresh from the feed

Filter by timeframe and category to zero in on the moves that matter.

Discovering autonomous quantum error correction via deep reinforcement learning
paper
arXiv cs.LG3 days ago

arXiv:2511.12482v1 Announce Type: cross Abstract: Quantum error correction is essential for fault-tolerant quantum computing. However, standard methods relying on active measurements may introduce additional errors. Autonomous quantum error correction (AQEC) circumvents this by utilizing engineered dissipation and drives in bosonic systems, but identifying practical encoding remains challenging due to stringent Knill-Laflamme conditions. In this work, we utilize curriculum learning enabled deep reinforcement learning to discover Bosonic codes under approximate AQEC framework to resist both single-photon and double-photon losses. We present an analytical solution of solving the master equation under approximation conditions, which can significantly accelerate the training process of reinforcement learning. The agent first identifies an encoded subspace surpassing the breakeven point through rapid exploration within a constrained evolutionary time-frame, then strategically fine-tunes its policy to sustain this performance advantage over extended temporal horizons. We find that the two-phase trained agent can discover the optimal set of codewords, i.e., the Fock states $\ket{4}$ and $\ket{7}$ considering the effect of both single-photon and double-photon loss. We identify that the discovered code surpasses the breakeven threshold over a longer evolution time and achieve the state-of-art performance. We also analyze the robustness of the code against the phase damping and amplitude damping noise. Our work highlights the potential of curriculum learning enabled deep reinforcement learning in discovering the optimal quantum error correct code especially in early fault-tolerant quantum systems.

#ai
Score · 2.80
Stochastic Predictive Analytics for Stocks in the Newsvendor Problem
paper
arXiv cs.LG3 days ago

arXiv:2511.12397v1 Announce Type: cross Abstract: This work addresses a key challenge in inventory management by developing a stochastic model that describes the dynamic distribution of inventory stock over time without assuming a specific demand distribution. Our model provides a flexible and applicable solution for situations with limited historical data and short-term predictions, making it well-suited for the Newsvendor problem. We evaluate our model's performance using real-world data from a large electronic marketplace, demonstrating its effectiveness in a practical forecasting scenario.

Score · 2.80
Multi-Domain EEG Representation Learning with Orthogonal Mapping and Attention-based Fusion for Cognitive Load Classification
paper
arXiv cs.LG3 days ago

arXiv:2511.12394v1 Announce Type: cross Abstract: We propose a new representation learning solution for the classification of cognitive load based on Electroencephalogram (EEG). Our method integrates both time and frequency domains by first passing the raw EEG signals through the convolutional encoder to obtain the time domain representations. Next, we measure the Power Spectral Density (PSD) for all five EEG frequency bands and generate the channel power values as 2D images referred to as multi-spectral topography maps. These multi-spectral topography maps are then fed to a separate encoder to obtain the representations in frequency domain. Our solution employs a multi-domain attention module that maps these domain-specific embeddings onto a shared embedding space to emphasize more on important inter-domain relationships to enhance the representations for cognitive load classification. Additionally, we incorporate an orthogonal projection constraint during the training of our method to effectively increase the inter-class distances while improving intra-class clustering. This enhancement allows efficient discrimination between different cognitive states and aids in better grouping of similar states within the feature space. We validate the effectiveness of our model through extensive experiments on two public EEG datasets, CL-Drive and CLARE for cognitive load classification. Our results demonstrate the superiority of our multi-domain approach over the traditional single-domain techniques. Moreover, we conduct ablation and sensitivity analyses to assess the impact of various components of our method. Finally, robustness experiments on different amounts of added noise demonstrate the stability of our method compared to other state-of-the-art solutions.

#ai
Score · 2.80
More Than Irrational: Modeling Belief-Biased Agents
paper
arXiv cs.LG3 days ago

arXiv:2511.12359v1 Announce Type: cross Abstract: Despite the explosive growth of AI and the technologies built upon it, predicting and inferring the sub-optimal behavior of users or human collaborators remains a critical challenge. In many cases, such behaviors are not a result of irrationality, but rather a rational decision made given inherent cognitive bounds and biased beliefs about the world. In this paper, we formally introduce a class of computational-rational (CR) user models for cognitively-bounded agents acting optimally under biased beliefs. The key novelty lies in explicitly modeling how a bounded memory process leads to a dynamically inconsistent and biased belief state and, consequently, sub-optimal sequential decision-making. We address the challenge of identifying the latent user-specific bound and inferring biased belief states from passive observations on the fly. We argue that for our formalized CR model family with an explicit and parameterized cognitive process, this challenge is tractable. To support our claim, we propose an efficient online inference method based on nested particle filtering that simultaneously tracks the user's latent belief state and estimates the unknown cognitive bound from a stream of observed actions. We validate our approach in a representative navigation task using memory decay as an example of a cognitive bound. With simulations, we show that (1) our CR model generates intuitively plausible behaviors corresponding to different levels of memory capacity, and (2) our inference method accurately and efficiently recovers the ground-truth cognitive bounds from limited observations ($\le 100$ steps). We further demonstrate how this approach provides a principled foundation for developing adaptive AI assistants, enabling adaptive assistance that accounts for the user's memory limitations.

#ai
#research
Score · 2.80
Reinforcement Learning for Chemical Ordering in Alloy Nanoparticles
paper
arXiv cs.LG3 days ago

arXiv:2511.12260v1 Announce Type: cross Abstract: We approach the search for optimal element ordering in bimetallic alloy nanoparticles (NPs) as a reinforcement learning (RL) problem, and have built an RL agent that learns to perform such global optimisation using the geometric graph representation of the NPs. To demonstrate the effectiveness, we train an RL agent to perform composition-conserving atomic swap actions on the icosahedral nanoparticle structure. Trained once on randomised $Ag_{X}Au_{309-X}$ compositions and orderings, the agent discovers previously established ground state structure. We show that this optimization is robust to differently ordered initialisations of the same NP compositions. We also demonstrate that a trained policy can extrapolate effectively to NPs of unseen size. However, the efficacy is limited when multiple alloying elements are involved. Our results demonstrate that RL with pre-trained equivariant graph encodings can navigate combinatorial ordering spaces at the nanoparticle scale, and offer a transferable optimisation strategy with the potential to generalise across composition and reduce repeated individual search cost.

#ai
Score · 2.80
Chemistry-Enhanced Diffusion-Based Framework for Small-to-Large Molecular Conformation Generation
paper
arXiv cs.LG3 days ago

arXiv:2511.12182v1 Announce Type: cross Abstract: Obtaining 3D conformations of realistic polyatomic molecules at the quantum chemistry level remains challenging, and although recent machine learning advances offer promise, predicting large-molecule structures still requires substantial computational effort. Here, we introduce StoL, a diffusion model-based framework that enables rapid and knowledge-free generation of large molecular structures from small-molecule data. Remarkably, StoL assembles molecules in a LEGO-style fashion from scratch, without seeing the target molecules or any structures of comparable size during training. Given a SMILES input, it decomposes the molecule into chemically valid fragments, generates their 3D structures with a diffusion model trained on small molecules, and assembles them into diverse conformations. This fragment-based strategy eliminates the need for large-molecule training data while maintaining high scalability and transferability. By embedding chemical principles into key steps, StoL ensures faster convergence, chemically rational structures, and broad configurational coverage, as confirmed against DFT calculations.

#ai
Score · 2.80
Rapid Machine Learning-Driven Detection of Pesticides and Dyes Using Raman Spectroscopy
paper
arXiv cs.LG3 days ago

arXiv:2511.12167v1 Announce Type: cross Abstract: The extensive use of pesticides and synthetic dyes poses critical threats to food safety, human health, and environmental sustainability, necessitating rapid and reliable detection methods. Raman spectroscopy offers molecularly specific fingerprints but suffers from spectral noise, fluorescence background, and band overlap, limiting its real-world applicability. Here, we propose a deep learning framework based on ResNet-18 feature extraction, combined with advanced classifiers, including XGBoost, SVM, and their hybrid integration, to detect pesticides and dyes from Raman spectroscopy, called MLRaman. The MLRaman with the CNN-XGBoost model achieved a predictive accuracy of 97.4% and a perfect AUC of 1.0, while it with the CNN-SVM model provided competitive results with robust class-wise discrimination. Dimensionality reduction analyses (PCA, t-SNE, UMAP) confirmed the separability of Raman embeddings across 10 analytes, including 7 pesticides and 3 dyes. Finally, we developed a user-friendly Streamlit application for real-time prediction, which successfully identified unseen Raman spectra from our independent experiments and also literature sources, underscoring strong generalization capacity. This study establishes a scalable, practical MLRaman model for multi-residue contaminant monitoring, with significant potential for deployment in food safety and environmental surveillance.

#ai
#research
Score · 2.80
Decoupled Action Head: Confining Task Knowledge to Conditioning Layers
paper
arXiv cs.LG3 days ago

arXiv:2511.12101v1 Announce Type: cross Abstract: Behavior Cloning (BC) is a data-driven supervised learning approach that has gained increasing attention with the success of scaling laws in language and vision domains. Among its implementations in robotic manipulation, Diffusion Policy (DP), with its two variants DP-CNN (DP-C) and DP-Transformer (DP-T), is one of the most effective and widely adopted models, demonstrating the advantages of predicting continuous action sequences. However, both DP and other BC methods remain constrained by the scarcity of paired training data, and the internal mechanisms underlying DP's effectiveness remain insufficiently understood, leading to limited generalization and a lack of principled design in model development. In this work, we propose a decoupled training recipe that leverages nearly cost-free kinematics-generated trajectories as observation-free data to pretrain a general action head (action generator). The pretrained action head is then frozen and adapted to novel tasks through feature modulation. Our experiments demonstrate the feasibility of this approach in both in-distribution and out-of-distribution scenarios. As an additional benefit, decoupling improves training efficiency; for instance, DP-C achieves up to a 41% speedup. Furthermore, the confinement of task-specific knowledge to the conditioning components under decoupling, combined with the near-identical performance of DP-C in both normal and decoupled training, indicates that the action generation backbone plays a limited role in robotic manipulation. Motivated by this observation, we introduce DP-MLP, which replaces the 244M-parameter U-Net backbone of DP-C with only 4M parameters of simple MLP blocks, achieving a 83.9% faster training speed under normal training and 89.1% under decoupling.

#ai
Score · 2.80
Explainable Transformer-Based Email Phishing Classification with Adversarial Robustness
paper
arXiv cs.LG3 days ago

arXiv:2511.12085v1 Announce Type: cross Abstract: Phishing and related cyber threats are becoming more varied and technologically advanced. Among these, email-based phishing remains the most dominant and persistent threat. These attacks exploit human vulnerabilities to disseminate malware or gain unauthorized access to sensitive information. Deep learning (DL) models, particularly transformer-based models, have significantly enhanced phishing mitigation through their contextual understanding of language. However, some recent threats, specifically Artificial Intelligence (AI)-generated phishing attacks, are reducing the overall system resilience of phishing detectors. In response, adversarial training has shown promise against AI-generated phishing threats. This study presents a hybrid approach that uses DistilBERT, a smaller, faster, and lighter version of the BERT transformer model for email classification. Robustness against text-based adversarial perturbations is reinforced using Fast Gradient Method (FGM) adversarial training. Furthermore, the framework integrates the LIME Explainable AI (XAI) technique to enhance the transparency of the DistilBERT architecture. The framework also uses the Flan-T5-small language model from Hugging Face to generate plain-language security narrative explanations for end-users. This combined approach ensures precise phishing classification while providing easily understandable justifications for the model's decisions.

#ai
#research
Score · 2.80
From Scaling to Structured Expressivity: Rethinking Transformers for CTR Prediction
paper
arXiv cs.LG3 days ago

arXiv:2511.12081v1 Announce Type: cross Abstract: Despite massive investments in scale, deep models for click-through rate (CTR) prediction often exhibit rapidly diminishing returns - a stark contrast to the smooth, predictable gains seen in large language models. We identify the root cause as a structural misalignment: Transformers assume sequential compositionality, while CTR data demand combinatorial reasoning over high-cardinality semantic fields. Unstructured attention spreads capacity indiscriminately, amplifying noise under extreme sparsity and breaking scalable learning. To restore alignment, we introduce the Field-Aware Transformer (FAT), which embeds field-based interaction priors into attention through decomposed content alignment and cross-field modulation. This design ensures model complexity scales with the number of fields F, not the total vocabulary size n >> F, leading to tighter generalization and, critically, observed power-law scaling in AUC as model width increases. We present the first formal scaling law for CTR models, grounded in Rademacher complexity, that explains and predicts this behavior. On large-scale benchmarks, FAT improves AUC by up to +0.51% over state-of-the-art methods. Deployed online, it delivers +2.33% CTR and +0.66% RPM. Our work establishes that effective scaling in recommendation arises not from size, but from structured expressivity-architectural coherence with data semantics.

#ai
#llm
Score · 2.80
Informed Bootstrap Augmentation Improves EEG Decoding
paper
arXiv cs.LG3 days ago

arXiv:2511.12073v1 Announce Type: cross Abstract: Electroencephalography (EEG) offers detailed access to neural dynamics but remains constrained by noise and trial-by-trial variability, limiting decoding performance in data-restricted or complex paradigms. Data augmentation is often employed to enhance feature representations, yet conventional uniform averaging overlooks differences in trial informativeness and can degrade representational quality. We introduce a weighted bootstrapping approach that prioritizes more reliable trials to generate higher-quality augmented samples. In a Sentence Evaluation paradigm, weights were computed from relative ERP differences and applied during probabilistic sampling and averaging. Across conditions, weighted bootstrapping improved decoding accuracy relative to unweighted (from 68.35% to 71.25% at best), demonstrating that emphasizing reliable trials strengthens representational quality. The results demonstrate that reliability-based augmentation yields more robust and discriminative EEG representations. The code is publicly available at https://github.com/lyricists/NeuroBootstrap.

#ai
#open_source
Score · 2.80
Goal-Oriented Multi-Agent Reinforcement Learning for Decentralized Agent Teams
paper
arXiv cs.LG3 days ago

arXiv:2511.11992v1 Announce Type: cross Abstract: Connected and autonomous vehicles across land, water, and air must often operate in dynamic, unpredictable environments with limited communication, no centralized control, and partial observability. These real-world constraints pose significant challenges for coordination, particularly when vehicles pursue individual objectives. To address this, we propose a decentralized Multi-Agent Reinforcement Learning (MARL) framework that enables vehicles, acting as agents, to communicate selectively based on local goals and observations. This goal-aware communication strategy allows agents to share only relevant information, enhancing collaboration while respecting visibility limitations. We validate our approach in complex multi-agent navigation tasks featuring obstacles and dynamic agent populations. Results show that our method significantly improves task success rates and reduces time-to-goal compared to non-cooperative baselines. Moreover, task performance remains stable as the number of agents increases, demonstrating scalability. These findings highlight the potential of decentralized, goal-driven MARL to support effective coordination in realistic multi-vehicle systems operating across diverse domains.

#ai
Score · 2.80
Temporal Micro-Doppler Spectrogram-based ViT Multiclass Target Classification
paper
arXiv cs.LG3 days ago

arXiv:2511.11951v1 Announce Type: cross Abstract: In this paper, we propose a new Temporal MDS-Vision Transformer (T-MDS-ViT) for multiclass target classification using millimeter-wave FMCW radar micro-Doppler spectrograms. Specifically, we design a transformer-based architecture that processes stacked range-velocity-angle (RVA) spatiotemporal tensors via patch embeddings and cross-axis attention mechanisms to explicitly model the sequential nature of MDS data across multiple frames. The T-MDS-ViT exploits mobility-aware constraints in its attention layer correspondences to maintain separability under target overlaps and partial occlusions. Next, we apply an explainable mechanism to examine how the attention layers focus on characteristic high-energy regions of the MDS representations and their effect on class-specific kinematic features. We also demonstrate that our proposed framework is superior to existing CNN-based methods in terms of classification accuracy while achieving better data efficiency and real-time deployability.

#ai
#research
Score · 2.80
Augmenting The Weather: A Hybrid Counterfactual-SMOTE Algorithm for Improving Crop Growth Prediction When Climate Changes
paper
arXiv cs.LG3 days ago

arXiv:2511.11945v1 Announce Type: cross Abstract: In recent years, humanity has begun to experience the catastrophic effects of climate change as economic sectors (such as agriculture) struggle with unpredictable and extreme weather events. Artificial Intelligence (AI) should help us handle these climate challenges but its most promising solutions are not good at dealing with climate-disrupted data; specifically, machine learning methods that work from historical data-distributions, are not good at handling out-of-distribution, outlier events. In this paper, we propose a novel data augmentation method, that treats the predictive problems around climate change as being, in part, due to class-imbalance issues; that is, prediction from historical datasets is difficult because, by definition, they lack sufficient minority-class instances of "climate outlier events". This novel data augmentation method -- called Counterfactual-Based SMOTE (CFA-SMOTE) -- combines an instance-based counterfactual method from Explainable AI (XAI) with the well-known class-imbalance method, SMOTE. CFA-SMOTE creates synthetic data-points representing outlier, climate-events that augment the dataset to improve predictive performance. We report comparative experiments using this CFA-SMOTE method, comparing it to benchmark counterfactual and class-imbalance methods under different conditions (i.e., class-imbalance ratios). The focal climate-change domain used relies on predicting grass growth on Irish dairy farms, during Europe-wide drought and forage crisis of 2018.

#ai
#research
#open_source
Score · 2.80
Improving Neutrino Oscillation Measurements through Event Classification
paper
arXiv cs.LG3 days ago

arXiv:2511.11938v1 Announce Type: cross Abstract: Precise neutrino energy reconstruction is essential for next-generation long-baseline oscillation experiments, yet current methods remain limited by large uncertainties in neutrino-nucleus interaction modeling. Even so, it is well established that different interaction channels produce systematically varying amounts of missing energy and therefore yield different reconstruction performance--information that standard calorimetric approaches do not exploit. We introduce a strategy that incorporates this structure by classifying events according to their underlying interaction type prior to energy reconstruction. Using supervised machine-learning techniques trained on labeled generator events, we leverage intrinsic kinematic differences among quasi-elastic scattering, meson-exchange current, resonance production, and deep-inelastic scattering processes. A cross-generator testing framework demonstrates that this classification approach is robust to microphysics mismodeling and, when applied to a simulated DUNE $\nu_\mu$ disappearance analysis, yields improved accuracy and sensitivity. These results highlight a practical path toward reducing reconstruction-driven systematics in future oscillation measurements.

#ai
#product
Score · 2.80
Modeling X-ray photon pile-up with a normalizing flow
paper
arXiv cs.LG3 days ago

arXiv:2511.11863v1 Announce Type: cross Abstract: The dynamic range of imaging detectors flown on-board X-ray observatories often only covers a limited flux range of extrasolar X-ray sources. The analysis of bright X-ray sources is complicated by so-called pile-up, which results from high incident photon flux. This nonlinear effect distorts the measured spectrum, resulting in biases in the inferred physical parameters, and can even lead to a complete signal loss in extreme cases. Piled-up data are commonly discarded due to resulting intractability of the likelihood. As a result, a large number of archival observations remain underexplored. We present a machine learning solution to this problem, using a simulation-based inference framework that allows us to estimate posterior distributions of physical source parameters from piled-up eROSITA data. We show that a normalizing flow produces better-constrained posterior densities than traditional mitigation techniques, as more data can be leveraged. We consider model- and calibration-dependent uncertainties and the applicability of such an algorithm to real data in the eROSITA archive.

#ai
Score · 2.80
On the Measure of a Model: From Intelligence to Generality
paper
arXiv cs.LG3 days ago

arXiv:2511.11773v1 Announce Type: cross Abstract: Benchmarks such as ARC, Raven-inspired tests, and the Blackbird Task are widely used to evaluate the intelligence of large language models (LLMs). Yet, the concept of intelligence remains elusive- lacking a stable definition and failing to predict performance on practical tasks such as question answering, summarization, or coding. Optimizing for such benchmarks risks misaligning evaluation with real-world utility. Our perspective is that evaluation should be grounded in generality rather than abstract notions of intelligence. We identify three assumptions that often underpin intelligence-focused evaluation: generality, stability, and realism. Through conceptual and formal analysis, we show that only generality withstands conceptual and empirical scrutiny. Intelligence is not what enables generality; generality is best understood as a multitask learning problem that directly links evaluation to measurable performance breadth and reliability. This perspective reframes how progress in AI should be assessed and proposes generality as a more stable foundation for evaluating capability across diverse and evolving tasks.

#ai
#llm
Score · 2.80
Learning to Refine: An Agentic RL Approach for Iterative SPARQL Query Construction
paper
arXiv cs.LG3 days ago

arXiv:2511.11770v1 Announce Type: cross Abstract: Generating complex, logically-sound SPARQL queries for multi-hop questions remains a critical bottleneck for Knowledge Graph Question Answering, as the brittle nature of one-shot generation by Large Language Models (LLMs) hinders reliable interaction with structured data. Current methods lack the adaptive policies needed to dynamically debug queries based on real-time execution feedback. This paper introduces a novel agentic framework where an LLM learns a resilient policy for the sequential process of iterative SPARQL construction. We show that a compact 3B-parameter model, trained exclusively via outcome-driven Reinforcement Learning (GRPO) without supervised fine-tuning, can learn effective policies for this task, discovering how to systematically recover from execution errors and refine its queries toward a correct answer. On a curated, executable single-answer subset of LC-QuAD 2.0, our agent achieves 49.7\% accuracy post-entity-linking, a significant 17.5 percentage point improvement over the strongest iterative zero-shot baseline. Further analysis reveals that while the agent's capability is driven by RL, its performance is enhanced by an explicit deliberative reasoning step that acts as a cognitive scaffold to improve policy precision. This work presents a generalizable blueprint for teaching agents to master formal, symbolic tools through interaction, bridging the gap between probabilistic LLMs and the structured world of Knowledge Graphs.

#ai
#llm
#research
Score · 2.80
Socrates-Mol: Self-Oriented Cognitive Reasoning through Autonomous Trial-and-Error with Empirical-Bayesian Screening for Molecules
paper
arXiv cs.LG3 days ago

arXiv:2511.11769v1 Announce Type: cross Abstract: Molecular property prediction is fundamental to chemical engineering applications such as solvent screening. We present Socrates-Mol, a framework that transforms language models into empirical Bayesian reasoners through context engineering, addressing cold start problems without model fine-tuning. The system implements a reflective-prediction cycle where initial outputs serve as priors, retrieved molecular cases provide evidence, and refined predictions form posteriors, extracting reusable chemical rules from sparse data. We introduce ranking tasks aligned with industrial screening priorities and employ cross-model self-consistency across five language models to reduce variance. Experiments on amine solvent LogP prediction reveal task-dependent patterns: regression achieves 72% MAE reduction and 112% R-squared improvement through self-consistency, while ranking tasks show limited gains due to systematic multi-model biases. The framework reduces deployment costs by over 70% compared to full fine-tuning, providing a scalable solution for molecular property prediction while elucidating the task-adaptive nature of self-consistency mechanisms.

#ai
Score · 2.80
Noise-Aware Optimization in Nominally Identical Manufacturing and Measuring Systems for High-Throughput Parallel Workflows
paper
arXiv cs.LG3 days ago

arXiv:2511.11739v1 Announce Type: cross Abstract: Device-to-device variability in experimental noise critically impacts reproducibility, especially in automated, high-throughput systems like additive manufacturing farms. While manageable in small labs, such variability can escalate into serious risks at larger scales, such as architectural 3D printing, where noise may cause structural or economic failures. This contribution presents a noise-aware decision-making algorithm that quantifies and models device-specific noise profiles to manage variability adaptively. It uses distributional analysis and pairwise divergence metrics with clustering to choose between single-device and robust multi-device Bayesian optimization strategies. Unlike conventional methods that assume homogeneous devices or generic robustness, this framework explicitly leverages inter-device differences to enhance performance, reproducibility, and efficiency. An experimental case study involving three nominally identical 3D printers (same brand, model, and close serial numbers) demonstrates reduced redundancy, lower resource usage, and improved reliability. Overall, this framework establishes a paradigm for precision- and resource-aware optimization in scalable, automated experimental platforms.

#ai
#research
Score · 2.80
Page 16 of 94