Latest

Fresh from the feed

Filter by timeframe and category to zero in on the moves that matter.

Achieving Fairness with a Simple Ridge Penalty
paper
arXiv cs.LG2 days ago

arXiv:2105.13817v4 Announce Type: replace Abstract: In this paper we present a general framework for estimating regression models subject to a user-defined level of fairness. We enforce fairness as a model selection step in which we choose the value of a ridge penalty to control the effect of sensitive attributes. We then estimate the parameters of the model conditional on the chosen penalty value. Our proposal is mathematically simple, with a solution that is partly in closed form, and produces estimates of the regression coefficients that are intuitive to interpret as a function of the level of fairness. Furthermore, it is easily extended to generalised linear models, kernelised regression models and other penalties; and it can accommodate multiple definitions of fairness. We compare our approach with the regression model from Komiyama et al. (2018), which implements a provably-optimal linear regression model; and with the fair models from Zafar et al. (2019). We evaluate these approaches empirically on six different data sets, and we find that our proposal provides better goodness of fit and better predictive accuracy for the same level of fairness. In addition, we highlight a source of bias in the original experimental evaluation in Komiyama et al. (2018).

#ai
#research
Score · 2.80
From Power to Precision: Learning Fine-grained Dexterity for Multi-fingered Robotic Hands
paper
arXiv cs.LG2 days ago

arXiv:2511.13710v1 Announce Type: cross Abstract: Human grasps can be roughly categorized into two types: power grasps and precision grasps. Precision grasping enables tool use and is believed to have influenced human evolution. Today's multi-fingered robotic hands are effective in power grasps, but for tasks requiring precision, parallel grippers are still more widely adopted. This contrast highlights a key limitation in current robotic hand design: the difficulty of achieving both stable power grasps and precise, fine-grained manipulation within a single, versatile system. In this work, we bridge this gap by jointly optimizing the control and hardware design of a multi-fingered dexterous hand, enabling both power and precision manipulation. Rather than redesigning the entire hand, we introduce a lightweight fingertip geometry modification, represent it as a contact plane, and jointly optimize its parameters along with the corresponding control. Our control strategy dynamically switches between power and precision manipulation and simplifies precision control into parallel thumb-index motions, which proves robust for sim-to-real transfer. On the design side, we leverage large-scale simulation to optimize the fingertip geometry using a differentiable neural-physics surrogate model. We validate our approach through extensive experiments in both sim-to-real and real-to-real settings. Our method achieves an 82.5% zero-shot success rate on unseen objects in sim-to-real precision grasping, and a 93.3% success rate in challenging real-world tasks involving bread pinching. These results demonstrate that our co-design framework can significantly enhance the fine-grained manipulation ability of multi-fingered hands without reducing their ability for power grasps. Our project page is at https://jianglongye.com/power-to-precision

#ai
Score · 2.80
T-SAR: A Full-Stack Co-design for CPU-Only Ternary LLM Inference via In-Place SIMD ALU Reorganization
paper
arXiv cs.LG2 days ago

arXiv:2511.13676v1 Announce Type: cross Abstract: Recent advances in LLMs have outpaced the computational and memory capacities of edge platforms that primarily employ CPUs, thereby challenging efficient and scalable deployment. While ternary quantization enables significant resource savings, existing CPU solutions rely heavily on memory-based lookup tables (LUTs) which limit scalability, and FPGA or GPU accelerators remain impractical for edge use. This paper presents T-SAR, the first framework to achieve scalable ternary LLM inference on CPUs by repurposing the SIMD register file for dynamic, in-register LUT generation with minimal hardware modifications. T-SAR eliminates memory bottlenecks and maximizes data-level parallelism, delivering 5.6-24.5x and 1.1-86.2x improvements in GEMM latency and GEMV throughput, respectively, with only 3.2% power and 1.4% area overheads in SIMD units. T-SAR achieves up to 2.5-4.9x the energy efficiency of an NVIDIA Jetson AGX Orin, establishing a practical approach for efficient LLM inference on edge platforms.

#ai
#llm
#research
Score · 2.80
Cost-Driven Synthesis of Sound Abstract Interpreters
paper
arXiv cs.LG2 days ago

arXiv:2511.13663v1 Announce Type: cross Abstract: Constructing abstract interpreters that provide global soundness guarantees remains a major obstacle in abstract interpretation. We investigate whether modern LLMs can reduce this burden by leveraging them to synthesize sound, non-trivial abstract interpreters across multiple abstract domains in the setting of neural network verification. We formulate synthesis as a constrained optimization problem and introduce a novel mathematically grounded cost function for measuring unsoundness under strict syntactic and semantic constraints. Based on this formulation, we develop a unified framework that unifies LLM-based generation with syntactic and semantic validation and a quantitative cost-guided feedback mechanism. Empirical results demonstrate that our framework not only matches the quality of handcrafted transformers, but more importantly, discovers sound, high-precision transformers for complex nonlinear operators that are absent from existing literature.

#ai
#llm
Score · 2.80
A Gentle Introduction to Conformal Time Series Forecasting
paper
arXiv cs.LG2 days ago

arXiv:2511.13608v1 Announce Type: cross Abstract: Conformal prediction is a powerful post-hoc framework for uncertainty quantification that provides distribution-free coverage guarantees. However, these guarantees crucially rely on the assumption of exchangeability. This assumption is fundamentally violated in time series data, where temporal dependence and distributional shifts are pervasive. As a result, classical split-conformal methods may yield prediction intervals that fail to maintain nominal validity. This review unifies recent advances in conformal forecasting methods specifically designed to address nonexchangeable data. We first present a theoretical foundation, deriving finite-sample guarantees for split-conformal prediction under mild weak-dependence conditions. We then survey and classify state-of-the-art approaches that mitigate serial dependence by reweighting calibration data, dynamically updating residual distributions, or adaptively tuning target coverage levels in real time. Finally, we present a comprehensive simulation study that compares these techniques in terms of empirical coverage, interval width, and computational cost, highlighting practical trade-offs and open research directions.

#ai
#research
Score · 2.80
Power Homotopy for Zeroth-Order Non-Convex Optimizations
paper
arXiv cs.LG2 days ago

arXiv:2511.13592v1 Announce Type: cross Abstract: We introduce GS-PowerHP, a novel zeroth-order method for non-convex optimization problems of the form $\max_{x \in \mathbb{R}^d} f(x)$. Our approach leverages two key components: a power-transformed Gaussian-smoothed surrogate $F_{N,\sigma}(\mu) = \mathbb{E}_{x\sim\mathcal{N}(\mu,\sigma^2 I_d)}[e^{N f(x)}]$ whose stationary points cluster near the global maximizer $x^*$ of $f$ for sufficiently large $N$, and an incrementally decaying $\sigma$ for enhanced data efficiency. Under mild assumptions, we prove convergence in expectation to a small neighborhood of $x^*$ with the iteration complexity of $O(d^2 \varepsilon^{-2})$. Empirical results show our approach consistently ranks among the top three across a suite of competing algorithms. Its robustness is underscored by the final experiment on a substantially high-dimensional problem ($d=150,528$), where it achieved first place on least-likely targeted black-box attacks against images from ImageNet, surpassing all competing methods.

#ai
Score · 2.80
AI Fairness Beyond Complete Demographics: Current Achievements and Future Directions
paper
arXiv cs.LG2 days ago

arXiv:2511.13525v1 Announce Type: cross Abstract: Fairness in artificial intelligence (AI) has become a growing concern due to discriminatory outcomes in AI-based decision-making systems. While various methods have been proposed to mitigate bias, most rely on complete demographic information, an assumption often impractical due to legal constraints and the risk of reinforcing discrimination. This survey examines fairness in AI when demographics are incomplete, addressing the gap between traditional approaches and real-world challenges. We introduce a novel taxonomy of fairness notions in this setting, clarifying their relationships and distinctions. Additionally, we summarize existing techniques that promote fairness beyond complete demographics and highlight open research questions to encourage further progress in the field.

#ai
#research
Score · 2.80
Systematic evaluation of time-frequency features for binaural sound source localization
paper
arXiv cs.LG2 days ago

arXiv:2511.13487v1 Announce Type: cross Abstract: This study presents a systematic evaluation of time-frequency feature design for binaural sound source localization (SSL), focusing on how feature selection influences model performance across diverse conditions. We investigate the performance of a convolutional neural network (CNN) model using various combinations of amplitude-based features (magnitude spectrogram, interaural level difference - ILD) and phase-based features (phase spectrogram, interaural phase difference - IPD). Evaluations on in-domain and out-of-domain data with mismatched head-related transfer functions (HRTFs) reveal that carefully chosen feature combinations often outperform increases in model complexity. While two-feature sets such as ILD + IPD are sufficient for in-domain SSL, generalization to diverse content requires richer inputs combining channel spectrograms with both ILD and IPD. Using the optimal feature sets, our low-complexity CNN model achieves competitive performance. Our findings underscore the importance of feature design in binaural SSL and provide practical guidance for both domain-specific and general-purpose localization.

#ai
#research
Score · 2.80
Taming Barren Plateaus in Arbitrary Parameterized Quantum Circuits Without Sacrificing Expressibility
paper
arXiv cs.LG2 days ago

arXiv:2511.13408v1 Announce Type: cross Abstract: Quantum algorithms based on parameterized quantum circuits (PQCs) have enabled a wide range of applications on near-term quantum devices. However, existing PQC architectures face several challenges, among which the ``barren plateaus" phenomenon is particularly prominent. In such cases, the loss function concentrates exponentially with increasing system size, thereby hindering effective parameter optimization. To address this challenge, we propose a general and hardware-efficient method for eliminating barren plateaus in an arbitrary PQC. Specifically, our approach achieves this by inserting a layer of easily implementable quantum channels into the original PQC, each channel requiring only one ancilla qubit and four additional gates, yielding a modified PQC (MPQC) that is provably at least as expressive as the original PQC and, under mild assumptions, is guaranteed to be free from barren plateaus. Furthermore, by appropriately adjusting the structure of MPQCs, we rigorously prove that any parameter in the original PQC can be made trainable. Importantly, the absence of barren plateaus in MPQCs is robust against realistic noise, making our approach directly applicable to current noisy intermediate-scale quantum (NISQ) hardware. Numerically, we demonstrate the practicality of our method by modifying a commonly used PQC for thermal-state preparation. The results show that {barren plateaus are effectively eliminated} in this class of circuits with up to 100 qubits and 2400 layers, whereas the original ansatz suffers from severe gradient vanishing.

#ai
Score · 2.80
Uncovering Causal Drivers of Energy Efficiency for Industrial Process in Foundry via Time-Series Causal Inference
paper
arXiv cs.LG2 days ago

arXiv:2511.13389v1 Announce Type: cross Abstract: Improving energy efficiency in industrial foundry processes is a critical challenge, as these operations are highly energy-intensive and marked by complex interdependencies among process variables. Correlation-based analyses often fail to distinguish true causal drivers from spurious associations, limiting their usefulness for decision-making. This paper applies a time-series causal inference framework to identify the operational factors that directly affect energy efficiency in induction furnace melting. Using production data from a Danish foundry, the study integrates time-series clustering to segment melting cycles into distinct operational modes with the PCMCI+ algorithm, a state-of-the-art causal discovery method, to uncover cause-effect relationships within each mode. Across clusters, robust causal relations among energy consumption, furnace temperature, and material weight define the core drivers of efficiency, while voltage consistently influences cooling water temperature with a delayed response. Cluster-specific differences further distinguish operational regimes: efficient clusters are characterized by stable causal structures, whereas inefficient ones exhibit reinforcing feedback loops and atypical dependencies. The contributions of this study are twofold. First, it introduces an integrated clustering-causal inference pipeline as a methodological innovation for analyzing energy-intensive processes. Second, it provides actionable insights that enable foundry operators to optimize performance, reduce energy consumption, and lower emissions.

#ai
#research
#product
Score · 2.80
Moving Pictures of Thought: Extracting Visual Knowledge in Charles S. Peirce's Manuscripts with Vision-Language Models
paper
arXiv cs.LG2 days ago

arXiv:2511.13378v1 Announce Type: cross Abstract: Diagrams are crucial yet underexplored tools in many disciplines, demonstrating the close connection between visual representation and scholarly reasoning. However, their iconic form poses obstacles to visual studies, intermedial analysis, and text-based digital workflows. In particular, Charles S. Peirce consistently advocated the use of diagrams as essential for reasoning and explanation. His manuscripts, often combining textual content with complex visual artifacts, provide a challenging case for studying documents involving heterogeneous materials. In this preliminary study, we investigate whether Visual Language Models (VLMs) can effectively help us identify and interpret such hybrid pages in context. First, we propose a workflow that (i) segments manuscript page layouts, (ii) reconnects each segment to IIIF-compliant annotations, and (iii) submits fragments containing diagrams to a VLM. In addition, by adopting Peirce's semiotic framework, we designed prompts to extract key knowledge about diagrams and produce concise captions. Finally, we integrated these captions into knowledge graphs, enabling structured representations of diagrammatic content within composite sources.

#ai
#research
Score · 2.80
EL3DD: Extended Latent 3D Diffusion for Language Conditioned Multitask Manipulation
paper
arXiv cs.LG2 days ago

arXiv:2511.13312v1 Announce Type: cross Abstract: Acting in human environments is a crucial capability for general-purpose robots, necessitating a robust understanding of natural language and its application to physical tasks. This paper seeks to harness the capabilities of diffusion models within a visuomotor policy framework that merges visual and textual inputs to generate precise robotic trajectories. By employing reference demonstrations during training, the model learns to execute manipulation tasks specified through textual commands within the robot's immediate environment. The proposed research aims to extend an existing model by leveraging improved embeddings, and adapting techniques from diffusion models for image generation. We evaluate our methods on the CALVIN dataset, proving enhanced performance on various manipulation tasks and an increased long-horizon success rate when multiple tasks are executed in sequence. Our approach reinforces the usefulness of diffusion models and contributes towards general multitask manipulation.

#ai
#research
Score · 2.80
Causal Inference, Biomarker Discovery, Graph Neural Network, Feature Selection
paper
arXiv cs.LG2 days ago

arXiv:2511.13295v1 Announce Type: cross Abstract: Biomarker discovery from high-throughput transcriptomic data is crucial for advancing precision medicine. However, existing methods often neglect gene-gene regulatory relationships and lack stability across datasets, leading to conflation of spurious correlations with genuine causal effects. To address these issues, we develop a causal graph neural network (Causal-GNN) method that integrates causal inference with multi-layer graph neural networks (GNNs). The key innovation is the incorporation of causal effect estimation for identifying stable biomarkers, coupled with a GNN-based propensity scoring mechanism that leverages cross-gene regulatory networks. Experimental results demonstrate that our method achieves consistently high predictive accuracy across four distinct datasets and four independent classifiers. Moreover, it enables the identification of more stable biomarkers compared to traditional methods. Our work provides a robust, efficient, and biologically interpretable tool for biomarker discovery, demonstrating strong potential for broad application across medical disciplines.

Score · 2.80
Learning to Solve Resource-Constrained Project Scheduling Problems with Duration Uncertainty using Graph Neural Networks
paper
arXiv cs.LG2 days ago

arXiv:2511.13214v1 Announce Type: cross Abstract: The Resource-Constrained Project Scheduling Problem (RCPSP) is a classical scheduling problem that has received significant attention due to of its numerous applications in industry. However, in practice, task durations are subject to uncertainty that must be considered in order to propose resilient scheduling. In this paper, we address the RCPSP variant with uncertain tasks duration (modeled using known probabilities) and aim to minimize the overall expected project duration. Our objective is to produce a baseline schedule that can be reused multiple times in an industrial setting regardless of the actual duration scenario. We leverage Graph Neural Networks in conjunction with Deep Reinforcement Learning (DRL) to develop an effective policy for task scheduling. This policy operates similarly to a priority dispatch rule and is paired with a Serial Schedule Generation Scheme to produce a schedule. Our empirical evaluation on standard benchmarks demonstrates the approach's superiority in terms of performance and its ability to generalize. The developed framework, Wheatley, is made publicly available online to facilitate further research and reproducibility.

#ai
#research
Score · 2.80
InteractiveGNNExplainer: A Visual Analytics Framework for Multi-Faceted Understanding and Probing of Graph Neural Network Predictions
paper
arXiv cs.LG2 days ago

arXiv:2511.13160v1 Announce Type: cross Abstract: Graph Neural Networks (GNNs) excel in graph-based learning tasks, but their complex, non-linear operations often render them as opaque "black boxes". This opacity hinders user trust, complicates debugging, bias detection, and adoption in critical domains requiring explainability. This paper introduces InteractiveGNNExplainer, a visual analytics framework to enhance GNN explainability, focusing on node classification. Our system uniquely integrates coordinated interactive views (dynamic graph layouts, embedding projections, feature inspection, neighborhood analysis) with established post-hoc (GNNExplainer) and intrinsic (GAT attention) explanation techniques. Crucially, it incorporates interactive graph editing, allowing users to perform a "what-if" analysis by perturbing graph structures and observing immediate impacts on GNN predictions and explanations. We detail the system architecture and, through case studies on Cora and CiteSeer datasets, demonstrate how InteractiveGNNExplainer facilitates in-depth misclassification diagnosis, comparative analysis of GCN versus GAT behaviors, and rigorous probing of model sensitivity. These capabilities foster a deeper, multifaceted understanding of GNN predictions, contributing to more transparent, trustworthy, and robust graph analysis.

#ai
#research
Score · 2.80
NuBench: An Open Benchmark for Deep Learning-Based Event Reconstruction in Neutrino Telescopes
paper
arXiv cs.LG2 days ago

arXiv:2511.13111v1 Announce Type: cross Abstract: Neutrino telescopes are large-scale detectors designed to observe Cherenkov radiation produced from neutrino interactions in water or ice. They exist to identify extraterrestrial neutrino sources and to probe fundamental questions pertaining to the elusive neutrino itself. A central challenge common across neutrino telescopes is to solve a series of inverse problems known as event reconstruction, which seeks to resolve properties of the incident neutrino, based on the detected Cherenkov light. In recent times, significant efforts have been made in adapting advances from deep learning research to event reconstruction, as such techniques provide several benefits over traditional methods. While a large degree of similarity in reconstruction needs and low-level data exists, cross-experimental collaboration has been hindered by a lack of diverse open-source datasets for comparing methods. We present NuBench, an open benchmark for deep learning-based event reconstruction in neutrino telescopes. NuBench comprises seven large-scale simulated datasets containing nearly 130 million charged- and neutral-current muon-neutrino interactions spanning 10 GeV to 100 TeV, generated across six detector geometries inspired by existing and proposed experiments. These datasets provide pulse- and event-level information suitable for developing and comparing machine-learning reconstruction methods in both water and ice environments. Using NuBench, we evaluate four reconstruction algorithms - ParticleNeT and DynEdge, both actively used within the KM3NeT and IceCube collaborations, respectively, along with GRIT and DeepIce - on up to five core tasks: energy and direction reconstruction, topology classification, interaction vertex prediction, and inelasticity estimation.

#ai
#research
Score · 2.80
Orientation-Free Neural Network-Based Bias Estimation for Low-Cost Stationary Accelerometers
paper
arXiv cs.LG2 days ago

arXiv:2511.13071v1 Announce Type: cross Abstract: Low-cost micro-electromechanical accelerometers are widely used in navigation, robotics, and consumer devices for motion sensing and position estimation. However, their performance is often degraded by bias errors. To eliminate deterministic bias terms a calibration procedure is applied under stationary conditions. It requires accelerom- eter leveling or complex orientation-dependent calibration procedures. To overcome those requirements, in this paper we present a model-free learning-based calibration method that estimates accelerometer bias under stationary conditions, without requiring knowledge of the sensor orientation and without the need to rotate the sensors. The proposed approach provides a fast, practical, and scalable solution suitable for rapid field deployment. Experimental validation on a 13.39-hour dataset collected from six accelerometers shows that the proposed method consistently achieves error levels more than 52% lower than traditional techniques. On a broader scale, this work contributes to the advancement of accurate calibration methods in orientation-free scenarios. As a consequence, it improves the reliability of low-cost inertial sensors in diverse scientific and industrial applications and eliminates the need for leveled calibration.

#research
Score · 2.80
GEM: Generative Entropy-Guided Preference Modeling for Few-shot Alignment of LLMs
paper
arXiv cs.LG2 days ago

arXiv:2511.13007v1 Announce Type: cross Abstract: Alignment of large language models (LLMs) with human preferences typically relies on supervised reward models or external judges that demand abundant annotations. However, in fields that rely on professional knowledge, such as medicine and law, such large-scale preference labels are often unachievable. In this paper, we propose a generative entropy-guided preference modeling approach named GEM for LLMs aligment at low-resource and domain-specific scenarios. Instead of training a discriminative reward model on preference data, we directly train the LLM to internalize a closed-loop optimization architecture that can extract and exploit the multi-dimensional, fine-grained cognitive signals implicit in human preferences. Specifically, our Cognitive Filtering module, based on entropy theory in decision making, first leverages Chain-of-Thought (CoT) prompting to generate diverse candidate reasoning chains (CoTs) from preference data. Subsequently, it introduces a token scoring mechanism to rank and weight the sampled CoTs, boosting the importance of high-confidence answers and strategically high-entropy tokens. Building on these filtered preferences, we fine-tune the LLM using a novel self-evaluated group advantage algorithm, SEGA, which effectively aggregates group-level cognitive signals and transforms the entropy-based scores into implicit rewards for policy optimization. In these ways, GEM empowers the LLM to rely on its own judgments and establishes an entropy-guided closed-loop cognitive optimization framework, enabling highly efficient few-shot alignment of LLMs. Experiments on general benchmarks and domain-specific tasks (such as mathematical reasoning and medical dialogues) demonstrate that our GEM achieves significant improvements with few-shot preference data.

#ai
#llm
#research
Score · 2.80
Revealing the dynamic responses of Pb under shock loading based on DFT-accuracy machine learning potential
paper
arXiv cs.LG2 days ago

arXiv:2511.12995v1 Announce Type: cross Abstract: Lead (Pb) is a typical low-melting-point ductile metal and serves as an important model material in the study of dynamic responses. Under shock-wave loading, its dynamic mechanical behavior comprises two key phenomena: plastic deformation and shock induced phase transitions. The underlying mechanisms of these processes are still poorly understood. Revealing these mechanisms remains challenging for experimental approaches. Non-equilibrium molecular dynamics (NEMD) simulations are an alternative theoretical tool for studying dynamic responses, as they capture atomic-scale mechanisms such as defect evolution and deformation pathways. However, due to the limited accuracy of empirical interatomic potentials, the reliability of previous NEMD studies is questioned. Using our newly developed machine learning potential for Pb-Sn alloys, we revisited the microstructure evolution in response to shock loading under various shock orientations. The results reveal that shock loading along the [001] orientation of Pb exhibits a fast, reversible, and massive phase transition and stacking fault evolution. The behavior of Pb differs from previous studies by the absence of twinning during plastic deformation. Loading along the [011] orientation leads to slow, irreversible plastic deformation, and a localized FCC-BCC phase transition in the Pitsch orientation relationship. This study provides crucial theoretical insights into the dynamic mechanical response of Pb, offering a theoretical input for understanding the microstructure-performance relationship under extreme conditions.

#ai
#research
Score · 2.80
Bootstrapping LLMs via Preference-Based Policy Optimization
paper
arXiv cs.LG2 days ago

arXiv:2511.12867v1 Announce Type: cross Abstract: Bootstrapping large language models (LLMs) through preference-based policy optimization offers a promising direction for aligning model behavior with human preferences without relying on extensive manual annotations. In this work, we propose a novel preference-based policy optimization (PbPO) framework that formulates the learning process as a min-max game between the main policy and a reward model (RM). The RM is constrained within a confidence set derived from preference data to ensure reliable exploitation. Our iterative online algorithm actively collects preference data through guided exploration of the evolving policy, enabling continual self-improvement of both the policy and the RM. We provide theoretical guarantees for our method, establishing high-probability regret bounds for both settings with sequence-level RM and token-level RM, demonstrating its effectiveness in bootstrapping LLMs. Extensive experiments on five benchmarks show that our approach consistently outperforms existing state-of-the-art preference optimization techniques.

#ai
#llm
Score · 2.80
Page 14 of 94