paper
arXiv cs.LG
November 18th, 2025 at 5:00 AM

MetaTT: A Global Tensor-Train Adapter for Parameter-Efficient Fine-Tuning

arXiv:2506.09105v2 Announce Type: replace Abstract: We present MetaTT, a Tensor Train (TT) adapter framework for fine-tuning of pre-trained transformers. MetaTT enables flexible and parameter-efficient model adaptation by using a single shared TT to factorize transformer sub-modules. This factorization indexes key structural dimensions, including layer and matrix type, and can optionally incorporate heads and tasks. This design allows MetaTT's parameter count to scale with the sum, rather than the product, of the modes, resulting in a substantially more compact adapter. Our benchmarks compare MetaTT with LoRA along with recent state-of-the-art matrix and tensor decomposition based fine-tuning methods. We observe that when tested on single-task standard language modeling benchmarks, MetaTT achieves competitive parameter efficiency to accuracy tradeoff. We further demonstrate that MetaTT performs competitively when compared to state-of-the-art methods on multi-task learning. Finally, we leverage the TT-ansatz to design a rank adaptive optimizer inspired by the DMRG method from many-body physics. Our results demonstrate that integrating this approach with AdamW enhances optimization performance for a specified target rank.

#ai
#product

Score: 2.80

Engagement proxy: 0

Canonical link: https://arxiv.org/abs/2506.09105