paper
arXiv cs.LG
November 18th, 2025 at 5:00 AM

Efficiently Computing Compact Formal Explanations

arXiv:2409.03060v2 Announce Type: replace Abstract: Building on VeriX (Verified eXplainability, arXiv:2212.01051), a system for producing optimal verified explanations for machine learning models, we present VeriX+, which significantly improves both the size and the generation time of formal explanations. We introduce a bound propagation-based sensitivity technique to improve the size, and a binary search-based traversal with confidence ranking for improving time -- the two techniques are orthogonal and can be used independently or together. We also show how to adapt the QuickXplain algorithm to our setting to provide a trade-off between size and time. Experimental evaluations on standard benchmarks demonstrate significant improvements on both metrics, e.g., a size reduction of $38\%$ on the GTSRB dataset and a time reduction of $90\%$ on MNIST. We demonstrate that our approach is scalable to transformers and real-world scenarios such as autonomous aircraft taxiing and sentiment analysis. We conclude by showcasing several novel applications of formal explanations.

#ai

Score: 2.80

Engagement proxy: 0

Canonical link: https://arxiv.org/abs/2409.03060