Iris: First-Class Multi-GPU Programming Experience in Triton
arXiv:2511.12500v1 Announce Type: cross Abstract: Multi-GPU programming traditionally requires developers to navigate complex trade-offs between performance and programmability. High-performance implementations typically rely on low-level HIP/CUDA communication libraries that demand substantial engineering effort for even basic overlap patterns, while simpler abstractions often sacrifice performance. We present Iris, a multi-GPU communication library implemented entirely in Python and Triton that eliminates this trade-off. Iris provides tile-based symmetric memory abstractions that naturally align with Triton's programming model, enabling developers to write single-source kernels that seamlessly interleave computation and communication. We demonstrate a taxonomy of compute-communication overlap patterns--from bulk-synchronous to fine-grained workgroup specialization--that can be implemented with minimal code changes in Iris, often requiring just a few additional lines within the same Triton kernel. Our evaluation shows that Iris achieves near-optimal bandwidth utilization in microbenchmarks and delivers up to 1.79x speedup over PyTorch and RCCL for GEMM+All-Scatter workloads, demonstrating that high-level implementations can match or exceed heavily-optimized libraries while dramatically simplifying multi-GPU programming.
Score: 2.80
Engagement proxy: 0
Canonical link: https://arxiv.org/abs/2511.12500