Convolutional Model Trees
arXiv:2511.12725v1 Announce Type: new Abstract: A method for creating a forest of model trees to fit samples of a function defined on images is described in several steps: down-sampling the images, determining a tree's hyperplanes, applying convolutions to the hyperplanes to handle small distortions of training images, and creating forests of model trees to increase accuracy and achieve a smooth fit. A 1-to-1 correspondence among pixels of images, coefficients of hyperplanes and coefficients of leaf functions offers the possibility of dealing with larger distortions such as arbitrary rotations or changes of perspective. A theoretical method for smoothing forest outputs to produce a continuously differentiable approximation is described. Within that framework, a training procedure is proved to converge.
Score: 2.80
Engagement proxy: 0
Canonical link: https://arxiv.org/abs/2511.12725