paper
arXiv cs.LG
November 18th, 2025 at 5:00 AM

Dynamic Reward Scaling for Multivariate Time Series Anomaly Detection: A VAE-Enhanced Reinforcement Learning Approach

arXiv:2511.12351v1 Announce Type: new Abstract: Detecting anomalies in multivariate time series is essential for monitoring complex industrial systems, where high dimensionality, limited labeled data, and subtle dependencies between sensors cause significant challenges. This paper presents a deep reinforcement learning framework that combines a Variational Autoencoder (VAE), an LSTM-based Deep Q-Network (DQN), dynamic reward shaping, and an active learning module to address these issues in a unified learning framework. The main contribution is the implementation of Dynamic Reward Scaling for Multivariate Time Series Anomaly Detection (DRSMT), which demonstrates how each component enhances the detection process. The VAE captures compact latent representations and reduces noise. The DQN enables adaptive, sequential anomaly classification, and the dynamic reward shaping balances exploration and exploitation during training by adjusting the importance of reconstruction and classification signals. In addition, active learning identifies the most uncertain samples for labeling, reducing the need for extensive manual supervision. Experiments on two multivariate benchmarks, namely Server Machine Dataset (SMD) and Water Distribution Testbed (WADI), show that the proposed method outperforms existing baselines in F1-score and AU-PR. These results highlight the effectiveness of combining generative modeling, reinforcement learning, and selective supervision for accurate and scalable anomaly detection in real-world multivariate systems.

#ai
#research

Score: 2.80

Engagement proxy: 0

Canonical link: https://arxiv.org/abs/2511.12351