SurvBench: A Standardised Preprocessing Pipeline for Multi-Modal Electronic Health Record Survival Analysis
arXiv:2511.11935v1 Announce Type: new Abstract: Electronic health record (EHR) data present tremendous opportunities for advancing survival analysis through deep learning, yet reproducibility remains severely constrained by inconsistent preprocessing methodologies. We present SurvBench, a comprehensive, open-source preprocessing pipeline that transforms raw PhysioNet datasets into standardised, model-ready tensors for multi-modal survival analysis. SurvBench provides data loaders for three major critical care databases, MIMIC-IV, eICU, and MC-MED, supporting diverse modalities including time-series vitals, static demographics, ICD diagnosis codes, and radiology reports. The pipeline implements rigorous data quality controls, patient-level splitting to prevent data leakage, explicit missingness tracking, and standardised temporal aggregation. SurvBench handles both single-risk (e.g., in-hospital mortality) and competing-risks scenarios (e.g., multiple discharge outcomes). The outputs are compatible with pycox library packages and implementations of standard statistical and deep learning models. By providing reproducible, configuration-driven preprocessing with comprehensive documentation, SurvBench addresses the "preprocessing gap" that has hindered fair comparison of deep learning survival models, enabling researchers to focus on methodological innovation rather than data engineering.
Score: 2.80
Engagement proxy: 0
Canonical link: https://arxiv.org/abs/2511.11935