paper
arXiv cs.LG
November 18th, 2025 at 5:00 AM

Physics-Informed Neural ODEs with Scale-Aware Residuals for Learning Stiff Biophysical Dynamics

arXiv:2511.11734v1 Announce Type: new Abstract: Neural differential equations offer a powerful framework for modeling continuous-time dynamics, but forecasting stiff biophysical systems remains unreliable. Standard Neural ODEs and physics informed variants often require orders of magnitude more iterations, and even then may converge to suboptimal solutions that fail to preserve oscillatory frequency or amplitude. We introduce PhysicsInformed Neural ODEs with with Scale-Aware Residuals (PI-NODE-SR), a framework that combines a low-order explicit solver (Heun method) residual normalisation to balance contributions between state variables evolving on disparate timescales. This combination stabilises training under realistic iteration budgets and avoids reliance on computationally expensive implicit solvers. On the Hodgkin-Huxley equations, PI-NODE-SR learns from a single oscillation simulated with a stiff solver (Rodas5P) and extrapolates beyond 100 ms, capturing both oscillation frequency and near-correct amplitudes. Remarkably, end-to-end learning of the vector field enables PI-NODE-SR to recover morphological features such as sharp subthreshold curvature in gating variables that are typically reserved for higher-order solvers, suggesting that neural correction can offset numerical diffusion. While performance remains sensitive to initialisation, PI-NODE-SR consistently reduces long-horizon errors relative to baseline Neural-ODEs and PINNs, offering a principled route to stable and efficient learning of stiff biological dynamics.

#ai

Score: 2.80

Engagement proxy: 0

Canonical link: https://arxiv.org/abs/2511.11734