paper
arXiv cs.LG
November 18th, 2025 at 5:00 AM

Parallel and Multi-Stage Knowledge Graph Retrieval for Behaviorally Aligned Financial Asset Recommendations

arXiv:2511.11583v1 Announce Type: new Abstract: Large language models (LLMs) show promise for personalized financial recommendations but are hampered by context limits, hallucinations, and a lack of behavioral grounding. Our prior work, FLARKO, embedded structured knowledge graphs (KGs) in LLM prompts to align advice with user behavior and market data. This paper introduces RAG-FLARKO, a retrieval-augmented extension to FLARKO, that overcomes scalability and relevance challenges using multi-stage and parallel KG retrieval processes. Our method first retrieves behaviorally relevant entities from a user's transaction KG and then uses this context to filter temporally consistent signals from a market KG, constructing a compact, grounded subgraph for the LLM. This pipeline reduces context overhead and sharpens the model's focus on relevant information. Empirical evaluation on a real-world financial transaction dataset demonstrates that RAG-FLARKO significantly enhances recommendation quality. Notably, our framework enables smaller, more efficient models to achieve high performance in both profitability and behavioral alignment, presenting a viable path for deploying grounded financial AI in resource-constrained environments.

#ai
#llm
#research

Score: 2.80

Engagement proxy: 0

Canonical link: https://arxiv.org/abs/2511.11583