paper
arXiv stat.ML
November 18th, 2025 at 5:00 AM

Foundations of Structural Causal Models with Latent Selection

arXiv:2401.06925v3 Announce Type: replace-cross Abstract: Three distinct phenomena complicate statistical causal analysis: latent common causes, causal cycles, and latent selection. Foundational works on Structural Causal Models (SCMs), e.g., Bongers et al. (2021, Ann. Stat., 49(5): 2885-2915), treat cycles and latent variables, while an analogous account of latent selection is missing. The goal of this article is to develop a theoretical foundation for modeling latent selection with SCMs. To achieve that, we introduce a conditioning operation for SCMs: it maps an SCM with explicit selection mechanisms to one without them while preserving the causal semantics of the selected subpopulation. Graphically, in Directed Mixed Graphs we extend bidirected edge--beyond latent common cause--to also encode latent selection. We prove that the conditioning operation preserves simplicity, acyclicity, and linearity of SCMs, and interacts well with marginalization, conditioning, and interventions. These properties make those three operations valuable tools for causal modeling, reasoning, and learning after abstracting away latent details (latent common causes and selection). Examples show how this abstraction streamlines analysis and clarifies when standard tools (e.g., adjustment, causal calculus, instrumental variables) remain valid under selection bias. We hope that these results deepen the SCM-based understanding of selection bias and become part of the standard causal modeling toolbox to build more reliable causal analysis.

#ai

Score: 2.80

Engagement proxy: 0

Canonical link: https://arxiv.org/abs/2401.06925