A Review of Statistical and Machine Learning Approaches for Coral Bleaching Assessment
arXiv:2511.12234v1 Announce Type: cross Abstract: Coral bleaching is a major concern for marine ecosystems; more than half of the world's coral reefs have either bleached or died over the past three decades. Increasing sea surface temperatures, along with various spatiotemporal environmental factors, are considered the primary reasons behind coral bleaching. The statistical and machine learning communities have focused on multiple aspects of the environment in detail. However, the literature on various stochastic modeling approaches for assessing coral bleaching is extremely scarce. Data-driven strategies are crucial for effective reef management, and this review article provides an overview of existing statistical and machine learning methods for assessing coral bleaching. Statistical frameworks, including simple regression models, generalized linear models, generalized additive models, Bayesian regression models, spatiotemporal models, and resilience indicators, such as Fisher's Information and Variance Index, are commonly used to explore how different environmental stressors influence coral bleaching. On the other hand, machine learning methods, including random forests, decision trees, support vector machines, and spatial operators, are more popular for detecting nonlinear relationships, analyzing high-dimensional data, and allowing integration of heterogeneous data from diverse sources. In addition to summarizing these models, we also discuss potential data-driven future research directions, with a focus on constructing statistical and machine learning models in specific contexts related to coral bleaching.
Score: 2.80
Engagement proxy: 0
Canonical link: https://arxiv.org/abs/2511.12234