paper
arXiv cs.CV
November 18th, 2025 at 5:00 AM

SynSeg: Feature Synergy for Multi-Category Contrastive Learning in End-to-End Open-Vocabulary Semantic Segmentation

arXiv:2508.06115v2 Announce Type: replace Abstract: Semantic segmentation in open-vocabulary scenarios presents significant challenges due to the wide range and granularity of semantic categories. Existing weakly-supervised methods often rely on category-specific supervision and ill-suited feature construction methods for contrastive learning, leading to semantic misalignment and poor performance. In this work, we propose a novel weakly-supervised approach, SynSeg, to address the challenges. SynSeg performs Multi-Category Contrastive Learning (MCCL) as a stronger training signal with a new feature reconstruction framework named Feature Synergy Structure (FSS). Specifically, MCCL strategy robustly combines both intra- and inter-category alignment and separation in order to make the model learn the knowledge of correlations from different categories within the same image. Moreover, FSS reconstructs discriminative features for contrastive learning through prior fusion and semantic-activation-map enhancement, effectively avoiding the foreground bias introduced by the visual encoder. Furthermore, SynSeg is a lightweight end-to-end solution without using any mid-term output from large-scale pretrained models and capable for real-time inference. In general, SynSeg effectively improves the abilities in semantic localization and discrimination under weak supervision in an efficient manner. Extensive experiments on benchmarks demonstrate that our method outperforms state-of-the-art (SOTA) performance. Particularly, SynSeg achieves higher accuracy than SOTA baselines with a ratio from 6.9\% up to 26.2\%.

#ai

Score: 2.80

Engagement proxy: 0

Canonical link: https://arxiv.org/abs/2508.06115