TEMPLE: Incentivizing Temporal Understanding of Video Large Language Models via Progressive Pre-SFT Alignment
arXiv:2503.16929v3 Announce Type: replace Abstract: Video Large Language Models (Video LLMs) have achieved significant success by adopting the paradigm of large-scale pre-training followed by supervised fine-tuning (SFT). However, existing approaches struggle with temporal reasoning due to weak temporal correspondence in the data and over-reliance on the next-token prediction paradigm}, which collectively result in the absence temporal supervision. To address these limitations, we propose TEMPLE (TEMporal Preference LEarning), a systematic framework that enhances temporal reasoning capabilities through Direct Preference Optimization (DPO). To address temporal information scarcity in data, we introduce an automated pipeline for systematically constructing temporality-intensive preference pairs comprising three steps: selecting temporally rich videos, designing video-specific perturbation strategies, and evaluating model responses on clean and perturbed inputs. Complementing this data pipeline, we provide additional supervision signals via preference learning and propose a novel Progressive Pre-SFT Alignment strategy featuring two key innovations: a curriculum learning strategy which progressively increases perturbation difficulty to maximize data efficiency; and applying preference optimization before instruction tuning to incentivize fundamental temporal alignment. Extensive experiments demonstrate that our approach consistently improves Video LLM performance across multiple benchmarks with a relatively small set of self-generated DPO data. Our findings highlight TEMPLE as a scalable and efficient complement to SFT-based methods, paving the way for developing reliable Video LLMs.
Score: 2.80
Engagement proxy: 0
Canonical link: https://arxiv.org/abs/2503.16929