AURA: Development and Validation of an Augmented Unplanned Removal Alert System using Synthetic ICU Videos
arXiv:2511.12241v1 Announce Type: cross Abstract: Unplanned extubation (UE) remains a critical patient safety concern in intensive care units (ICUs), often leading to severe complications or death. Real-time UE detection has been limited, largely due to the ethical and privacy challenges of obtaining annotated ICU video data. We propose Augmented Unplanned Removal Alert (AURA), a vision-based risk detection system developed and validated entirely on a fully synthetic video dataset. By leveraging text-to-video diffusion, we generated diverse and clinically realistic ICU scenarios capturing a range of patient behaviors and care contexts. The system applies pose estimation to identify two high-risk movement patterns: collision, defined as hand entry into spatial zones near airway tubes, and agitation, quantified by the velocity of tracked anatomical keypoints. Expert assessments confirmed the realism of the synthetic data, and performance evaluations showed high accuracy for collision detection and moderate performance for agitation recognition. This work demonstrates a novel pathway for developing privacy-preserving, reproducible patient safety monitoring systems with potential for deployment in intensive care settings.
Score: 2.80
Engagement proxy: 0
Canonical link: https://arxiv.org/abs/2511.12241