paper
arXiv cs.CV
November 18th, 2025 at 5:00 AM

Leveraging Quantum-Based Architectures for Robust Diagnostics

arXiv:2511.12386v1 Announce Type: new Abstract: The objective of this study is to diagnose and differentiate kidney stones, cysts, and tumors using Computed Tomography (CT) images of the kidney. This study leverages a hybrid quantum-classical framework in this regard. We combine a pretrained ResNet50 encoder, with a Quantum Convolutional Neural Network (QCNN) to explore quantum-assisted diagnosis. We pre-process the kidney images using denoising and contrast limited adaptive histogram equalization to enhance feature extraction. We address class imbalance through data augmentation and weighted sampling. Latent features extracted by the encoder are transformed into qubits via angle encoding and processed by a QCNN. The model is evaluated on both 8-qubit and 12-qubit configurations. Both architectures achieved rapid convergence with stable learning curves and high consistency between training and validation performance. The models reached a test accuracy of 0.99, with the 12-qubit configuration providing improvements in overall recall and precision, particularly for Cyst and Tumor detection, where it achieved perfect recall for Cysts and a tumor F1-score of 0.9956. Confusion matrix analysis further confirmed reliable classification behavior across all classes, with very few misclassifications. Results demonstrate that integrating classical pre-processing and deep feature extraction with quantum circuits enhances medical diagnostic performance.

#ai
#research

Score: 2.80

Engagement proxy: 0

Canonical link: https://arxiv.org/abs/2511.12386