paper
arXiv cs.CV
November 18th, 2025 at 5:00 AM

Suppressing VLM Hallucinations with Spectral Representation Filtering

arXiv:2511.12220v1 Announce Type: new Abstract: Vision-language models (VLMs) frequently produce hallucinations in the form of descriptions of objects, attributes, or relations that do not exist in the image due to over-reliance on language priors and imprecise cross-modal grounding. We introduce Spectral Representation Filtering (SRF), a lightweight, training-free method to suppress such hallucinations by analyzing and correcting the covariance structure of the model's representations. SRF identifies low-rank hallucination modes through eigendecomposition of the covariance of the differences between features collected for truthful and hallucinatory captions, revealing structured biases in the feature space. A soft spectral filter then attenuates these modes in the feed-forward projection weights of deeper vLLM layers, equalizing feature variance while preserving semantic fidelity. Unlike decoding or retraining-based approaches, SRF operates entirely post-hoc, incurs zero inference overhead, and requires no architectural modifications. Across three families of VLMs (LLaVA-1.5, MiniGPT-4, and mPLUG-Owl2), SRF consistently reduces hallucination rates on MSCOCO, POPE-VQA, and other visual tasks benchmarks, achieving state-of-the-art faithfulness without degrading caption quality.

#ai
#llm

Score: 2.80

Engagement proxy: 0

Canonical link: https://arxiv.org/abs/2511.12220