Dynamic Parameter Optimization for Highly Transferable Transformation-Based Attacks
arXiv:2511.11993v1 Announce Type: new Abstract: Despite their wide application, the vulnerabilities of deep neural networks raise societal concerns. Among them, transformation-based attacks have demonstrated notable success in transfer attacks. However, existing attacks suffer from blind spots in parameter optimization, limiting their full potential. Specifically, (1) prior work generally considers low-iteration settings, yet attacks perform quite differently at higher iterations, so characterizing overall performance based only on low-iteration results is misleading. (2) Existing attacks use uniform parameters for different surrogate models, iterations, and tasks, which greatly impairs transferability. (3) Traditional transformation parameter optimization relies on grid search. For n parameters with m steps each, the complexity is O(mn). Large computational overhead limits further optimization of parameters. To address these limitations, we conduct an empirical study with various transformations as baselines, revealing three dynamic patterns of transferability with respect to parameter strength. We further propose a novel Concentric Decay Model (CDM) to effectively explain these patterns. Building on these insights, we propose an efficient Dynamic Parameter Optimization (DPO) based on the rise-then-fall pattern, reducing the complexity to O(nlogm). Comprehensive experiments on existing transformation-based attacks across different surrogate models, iterations, and tasks demonstrate that our DPO can significantly improve transferability.
Score: 2.80
Engagement proxy: 0
Canonical link: https://arxiv.org/abs/2511.11993